8 Parallaxis Version 2 User Manual

1 Introduction

The Parallaxis parallel programming project started in 1987, while Thomas Briunl stayed at the
University of Southern California, Los Angeles, on a Fulbright grant. After returning to the
Universitit Stuttgart, Germany, he developed a model for massively parallel computing and
guided a first partial implementation, performed by students Bruno Schulze and Roland Beck-
er. Since the completion of his Ph.D. thesis on Parallaxis in 1989 [Braunl 89d] Thomas Bréunl
has been directing the Parallaxis research project with a group of currently seven students
working in several areas of the project. Ingo Barth crafted the Parallaxis compiler and Frank
Sembach developed the PARZ intermediate code interpreter/simulator. Both heavily partici-
pated in changes and improvements of the high level language Parallaxis, the pseudo-assembly
language PARZ, the interface between them, and the debugger. They used Apollo DN3000 and
Sun 4 workstations to write their programs in C with the tools lex and yacc. This source code
has been ported to the IBM PC and the Apple Macintosh. Karsten Krauskopf developed a pre-
processor for Parallaxis, which enables the declaration and use of physical or user-defined
dimensions and units for data values. This software package may later be distributed separately
as public domain. Oliver Christ and Bruno Schulze developed a graphics interface tool for Par-
allaxis source programs for Sun under X-Windows. It reads a Parallaxis program and inter-
actively displays the processor connection topology on a graphics screen. Finally, Stefan
Engelhardt developed the compiler for translating intermediate PARZ programs to standard C
(resulting in faster "compiled” Parallaxis programs as compared to the "interpreted" mode of-
fered by the simulator), and also the compiler for translating PARZ programs to MasPar's MPL
(their own parallel C extension), allowing Parallaxis programs to be executed on a true mas-
sively parallel system. A compiler translating PARZ programs to Thinking Machine's C* is in
preparation; this will extend Parallaxis to the massively parallel Connection Machine and
AMT's Distributed Array Processor.

This research report is an extended and updated version of [Barth Braunl Sembach 90], which
described version 1 of the Parallaxis system. New material has been included for version 2 of
the software, and this report also covers all information contained in [Barth Bridunl Sembach
90]. Further papers published on the Parallaxis project are
in English: [Brdunl 89a], [Braunl 89b], [Brdaunl 89c], [Braunl 90], [Braunl 91b].
in German: [Barth 90a], [Barth 90b], [Brdunl 89d], [Braunl 91a], [Engelhardt91],
[Krauskopf 90], [Liebelt 91], [Schulze Christ 90], [Sembach 90a],
[Sembach 90b], [Verba 90], [Walter 91].

The authors would like to thank Prof. Dr. G. Barth, director of the German Al research institute
(DFK]I) in Kaiserslautern, and Prof. Dr. A. Reuter, director of the parallel and distributed su-
percomputer institute (IPVR) in Stuttgart, for their support. We also thank Michael Ancutici,
Claus Brenner, Karsten Krauskopf, Sabine Liebelt, Harald Nebel, Reinhard Verba, Volker
Walter, and all the students from the Parallel Programming course at the Universitit Stuttgart,
who wrote a lot of Parallaxis code and had to discover quite a number of bugs in the early ver-
sions of the Parallaxis system. Your applications make the whole system worthwhile.

1. Introduction 9

What's New in Version Two

In version 2 of the Parallaxis language definition and the Parallaxis Programming System v
made some major extensions, the most important being the introduction of semi-dynamic c«
nection structures. Parallaxis programs may now have several independent or overlapping i
terconnection structures at a time, and different connection structures at different times (link
to procedure scopes). We tried to be upward compatible as much as possible, however, ther
are two minor changes you might have to make in order to run your old (version 1) Paralla>
programs:

How to upgrade old Parallaxis Programs

¢ change power operator symbol from "~" to "* *"

e suffix load/store commands in procedures without selection
with " [*]" selection

Language Changes

Data Types and Operators

¢ Pointers
¢ Variant Records

e power operator "**"

Dynamic data structures and variant record structures have been added. Syntax and Semanti
are identical to Modula-2. The power operator had to be changed to double asterik, since th
"~" symbol is now used for dereferencing pointer expressions.

Multiple Configuration and Connection Structures

Several configuation and connection structures may be defined globally for the entire prograi
or locally for each procedure. Procedures with configuration/connection structures may not
nested inside each other. Multiple configuration/connection structures may be defined on d
jointed sets of PEs (with the possibility of interconnections between these groups), each havi
its individual data declaration. Several configuration/connection structures may also be defin
on the same set of PEs, resulting in an overlay structure.

PE selection syntax in PARALLEL, LOAD/STORE, and REDUCE statements has been chang
slightly because of this extension. Besides the PE-range, a selection also has to specify the
name of the configuration in case there are more than one (i.e.: PARALLEL tree[3..7]

Connections are no longer restricted to be /:/ connections. They may now be arbitrary m:n
connections (that is any input and output port may have an arbitrary number of connections
The arrival of multiple data values at a time has to be avoided. Therefore, the data exchang
operations may be supplied with implicit data reduction operations.

Data Exchange
e propagate [reduce]
¢ send [reduce]

* receive [reduce]

10 Parallaxis Version 2 User Manual

All participating PEs had to be active in a propagate data exchange operation. For multiple
independent configuation structures, this is no longer possible. Therefore, propagate has
been given two siblings: send, for transferring data to a destination-PE that does not have to
be active (i.e. being in another configuration, or also inside the same configuration), and re—
ceive, for transferring data from a source-PE that does not have to be active.

All three data exchange operations may be specified with an implicit reduction operator, in or-
der to take care of possible m.n connections. Using this operator, multiple imcoming values are
reduced to a single value.

Standard Functions
e parallel read

e parallel write

e in/out-connected

e new/dispose

Read and write may now take vector arguments, reflecting the parallel I/O technology, called
"Data Vault" at Thinking Machines and "Parallel Disk Array" at MasPar. In/Out-connected
functions have been changed according to the new multiple connection structures, and dynamic
storage allocation functions have been added.

Graphics Interface

A number of graphics routines have been included in Parallaxis to allow the building of an
interface on a workstation with the X-window system (simulator and executables). Multiple
windows may be opened (with manually positioning and activating via a mouse click) for
graphics output.

Reduction

User-defined reduction functions now have to have two vector arguments and a vector result.

Programming System Changes

Compiler

The compiler now optionally creates cross-reference files for the symbolic debugger of the sim-
ulator.

Simulator and Debugger

The simulator also allows variant data structures (unions) and supports dynamic connection
structures. That is, the PE connections are no longer listed before the actual commands in each
PARZ program, but there are vector commands connect, biconnect and disconnect
to build and discard dynamic connection structures. As a consequence, there is now a debugger
command for displaying the dynamic connections (formerly integrated in the LI ST command).

1. Introduction 11

The debugger has been extended to a symbolic debugger that operates on Parallaxis level a
on PARZ level (new commands handling Parallaxis expressions are EXAMINE and ASSIG!
Parallaxis source code is always displayed, when available. All debugger commands former
using PARZ labels only, may now also use Parallaxis source line numbers.

New Tools and Further Compilers

The visualizer tool is being discussed briefly. However, it is still not ready for version 2 dis
bution. There are two all new PARZ-to-C compilers. The first one is to speed up Parallaxis p
grams on single-processor Unix workstations, and the second compiler has been especially
designed to run Parallaxis programs on the massively parallel MasPar computer system (16,3
PEs).

12

Parallaxis Version 2 User Manual

2 Installing the Simulation System

On a Unix system:

transfer all files of the supplied HD floppy disk from an IBM-PC AT to
the workstation in binary mode (via kermit, ftp, etc.)

uncompress the files (Unix command "uncompress" for suffix ". z")
open archive file (Unix command "tar" for suffix ".tar")

copy the executable files pa and pz to the local /bin directory

copy the manual pages pa .1 and pz. 1 to the local /man directory

copy the example programs as read-only to a public directory

On an IBM-PC or Compatible:

be sure to use a model AT or higher, since the supplied floppies are HD
copy the executable files pa . exe and pz . exe to a directory searched by "path"
copy the example programs to a subdirectory

for the DOS operating system's limit of 640 KB, so severe memory space restrictions
apply for both, compiler and simulator. That is only smaller application programs may be
compiled and executed !

the OS/2 version 2.0 operating system is strongly recommended (use the appropriate ver-
sion of the Parallaxis software) !

On an Apple Macintosh:

be sure to use a double sided disk drive (800 KB)

copy the executable files Compiler and Simulator (if you have the version without
floating point co-processor) or Compiler and SimulatorFP (if you have the version
with co-processor and 68020 CPU), respectively.

increase the programs' memory allocation depending on your Mac's memory

copy the example programs into the same or a separate folder
(' be aware of colons in full Mac-filenames, e.g. :samples:find.p)

in case you are using a Macintosh with only 1 MB of memory, some space restrictions
apply for both, compiler and simulator, that is only smaller application programs may be
compiled and executed

a memory extension to 2 MB or higher and the usage of multi-finder is highly recom-
mended for medium size and large application programs

the compiler has a user-interface in Macintosh style:
all options are set via menu selection, so there is no need for command line arguments as
described in the following section

the simulator will be launched automatically on double-clicking a compiled file

explicit starting of the simulator brings up a Unix-like command line, where options and I/
O-redirections may be entered; without options a file selector box appears

Installation of tools and the intermediate code compilers is described with the software only.

3. Using the Parallaxis Compiler

3 Using the Parallaxis Compiler

The compiler is started by typing
pa {options} in_filename [-o out_filename]

The compiler takes files ending with . p, . para or . pre as input files. If the filename enter
has none of these extensions, the compiler adds one and tries to open this file. If no file witt
standard extension can be found, the compiler tries the given filename without an extensior
Options start with a '-' sign. All characters after the '-' sign up to the next white space are treat
as options. A compiler call may contain more than one option.

The options are:

d ignore all DEBUG and TRACE commands.
enum set the number of error messages reported to the console to that number.
In a listing-file all error messages are reported.

h use every temporary variable only once.
This option should only be used in combination with an optimizer.

1 generate a listing file. The name of the listing file is built by removing the standard-
tension and adding the extension . 1ist (or .1is ona PC). All error- and warning
messages are reported in the listing file.

m don't generate PARZ code for operand-checking in mathematical operations (divisios
In(0)). These checks may be omitted when using the PARZ simulator.

n don't generate PARZ code to check for dereferencing of NIL pointers.

p use the compiler as a filter, that is reading from standard input and writing to standa
output. In this case, option 1 will be ignored.

r don't generate PARZ code for range-checks. However, be aware that range-errors 1
not be detected by the PARZ simulator.

u distinguish between lower case and capital letters.

v verbose mode, give information about the compilation.

wnum set the number of warning messages reported to the console to that number.In a list
file all warning messages are reported.

x generate a cross reference file. The xrf-file contains the additional information to us
the symbolic debugger in the PARZ simulator. The name of the xrf-file is built from |
output filename by removing an extension . z and adding the extension . xr£. If tt
compiler is used as a filter, then the xrf-file is called $xrf.

The generated PARZ code is normally written to a file. The name of this file is built by ren
ving the standard extension from the infilename and adding the extension . z to it. If optior
o out_filename is provided, this filename is used for the PARZ program.

If an error has occurred, no PARZ code will be generated. The compiled PARZ code contai
additional information to allow the PARZ simulator to show the source lines of the progran
The simulator generates the source-filename from the PARZ filename.

For testing massively parallel algorithms, the PARZ simulator may be used to report the ex
cution of a program step by step. With a pseudo-comment $R {proc_ident} within a Parallax

14 Parallaxis Version 2 User Manual

comment, code is generated to report these procedures. If a procedure which is reported calls a
non-reported procedure, only the procedure call will appear in the reporting file.

The same pseudo-comment $R {proc_ident} is treated by the PARZ-to-C and PARZ-to-MPL
intermediate code compilers not as a recording option, but as a timing option (which is analog
and makes much more sense in this case). Measured run times (CPU-time) for all procedures
specified will be printed on standard output.

The pseudo-comment $D {proc_ident} makes the compiler generate debugging code for the
procedure names given.

4. Using the PARZ Simulator and Debugger

4 Using the PARZ Simulator and Debugger

4.1 Using the PARZ Simulator
The PARZ simulator is started by typing
pz {options \ filename}

Options and filenames are separated by blanks. If both are missing, or if a wrong option is g
en, PARZ writes the list of all valid options and terminates. Options are single letters preced
by a dash; some of them may be followed by a number or a filename. Options may be merg
into a single option word (with some exceptions, see below):

Example: pz -1 -c -el0 myfile isequivalentto pz -lcel0O myfi

The arguments of the pz command are processed from left to right, according to the followi
rules: A filename identifies a program that is loaded and executed (exception: option —1). Fi
names ending with . p are treated as Parallaxis programs, files with trailing . z are PARZ p
grams. An option may be overridden by another option later in the command line.

List of Command Line Options

c [0]1] compile (UNIX-systems only)

1 : the following filenames identify Parallaxis programs that have to be
compiled by the compiler pa to a PARZ program, prior to execution.

0 : the following filenames identify PARZ programs.
Compilation is off by default, files ending with . p are always compiled.

d [0]1] debug mode
The output of DEBUG- and TRACE-commands is enabled (by 1) or disabled
(by 0). By default, debug output is enabled.

e [0-9]+ error messages
Limit the number of error messages and warnings when reading a program.
Default limit is set to 15 messages.

f filter
Read a program from standard input and execute it. No filename may appea
after this option. The options —c, —1 and —m have no effect. If a single-step
mode is activated by —s, the single-step information is printed, but simulatic
does not stop after each step. The program loaded should net try to read fror
standard-input, as correct input cannot be guaranteed after reading a PARZ
program from the same stream. Trying to interrupt the simulation from the
terminal (Control-C), will terminate the simulator.

1 load
If a filename follows in the command line, this file will be loaded, but not
started. Otherwise, an already executed program will remain in memory.
The simulator will enter command level, indicated by prompt " P> ".

16 Parallaxis Version 2 User Manual

m [0-9]* more - screen size (set screen size for scrolling, like more in UNIX)
Defines the number of lines after which output on command level is interrupted.
If the number is zero, more-like output is disabled. If the number is missing,
more is reactivated. Default is screen size 23 (or window size for Macintosh).
r [0[1]2] [name] recording mode
Defines format and filename of output-recording.
0 : no recording
1 : short recording : command type and number of active PEs
2 :longrecording : complete command with arguments and PE-activity-status
See Appendix B for details.
name is the name of the recording-file. If not specified, the recording filename
is derived from the program filename. If name is specified, this option may not
be merged with other options in one word.
Default: no recording.
s [0[1]2] single-step mode
0 : no program interrupts
1 : program interrupted before each Parallaxis statement
2 : program interrupted before each PARZ command
Default is: no program interrupts.
At each interruption, the simulation status is printed and the simulator enters
execution level, indicated by prompt "P* ".
w [0]1] runtime warnings
Enables (1) or disables (0) runtime warnings.
By default, runtime warnings are enabled.

If the digit in options -c, -d, -r, -s or -w is omitted, it is assumed to be '1". If the last argument
of pz is the only filename and if no option -1 is given, the program is loaded and executed with-
out further comment. Otherwise, for each file read, the simulator writes the names of the
source-files and recording-files to the terminal.

4.2 Using the PARZ Debugger

The debugger has two levels: the command level (prompt "P>"), and the execution level
(prompt "P*"). Command level is reached directly by option -1, while execution level is
reached when a simulated program is interrupted. Both levels share the same commands as de-
scribed below with a few exceptions. Commands consist of a command identifier and argu-
ments qualifying the command. Identifier and arguments are separated by white space; each
command is entered by pressing the <RETURN> key. Command identifiers and argument iden-
tifiers may be abbreviated. Between several argument identifiers, each abbreviated by one char-
acter, the delimiting white space may be omitted. Except in strings, lower case and capital
letters are not distinguished. The command syntax is described in EBNF (Extended Backus-
Naur Form) with the following additions:

X(YZ) : each abbreviation of XYZ, at least X. E.g. 'ST (EP) ' may read 'ST', 'STE' or 'STEP'
's' : the string s, literally

{ x }+ :non-empty list of x.

{ x },* :list of x, separated by commas.

{ x },+ : non-empty list of x, separated by commas.

num : apositive integer number

4. Using the PARZ Simulator and Debugger

line : a Parallaxis procedure name: the first command of the procedure is referenced.
or a num: In Parallaxis-mode (see MODE): the command accor
ding to this or the next higher sourceline is used.

In PARZ-mode: the first command with that label is
referenced.

label : like line in PARZ-mode

pelist : optional list of PE-numbers

Syntax: [PE({num[".'num] },+|"™*')]

Example: 'PE 1..3,10..11,5' : the PEs 1,2,3,5,10 and 11
'PE *' : all PEs
selection : Parallaxis selection without configuration name.
expr : Parallaxis expr: for syntax see Appendix A.

Debugger Commands
A(SSIGN) [selection] designator ':="" expr

Assigns the value of expr to the Parallaxis designator designator.
expr is evaluated on all currently active PEs.
If selection is specified, the assignment takes place on the selected PEs only.
Example:p* A x := 4 * id_no [assigns the value of expression 4 * id_no
to the vector integer variable x

B(REAKPOINT) [[sign] line [offset]]
The BREAKPOINT command is used to show, set, and remove breakpoints. Execution sto
if a command marked by a breakpoint is reached. The simulator will be in execution mode ai
print the current simulation status.
sign ='+'|"-\.
offset = sign num.
If signis '+ or missing, a breakpoint will be set, otherwise it will be removed.
line and offset define the PARZ command to be considered:
If 1ine is a procedure name: breakpoints are set on all procedures with that
name, no of £set is allowed.
If 1ine is a number: in Parallaxis-mode, no offset is allowed,
line is the line number in the source file.
in PARZ-mode, the command with distance of fset
from the command labelled 1ine is taken; an offset i
only needed for commands without a label.
Example: P> B 75 0O set breakpoint at command on Parallaxis source line 75

C(ALLS) [A(CTIVITY)]
This command shows the current call-stack.
For each procedure on the call-stack, the following is printed:
- the name of the Parallaxis-procedure, if known
- the label of the PROC-command
- the source line of the procedure call, if known
- the label of the CALL-command that called the procedure
If A(CTIVITY) is present, the PE-activities, saved by conditional calls, are printed too.

18 Parallaxis Version 2 User Manual

Example: P* C [0 shows the call stack

CO(NNECTIONS) { cpat },*

Lists all or some of the established connections between ports.
cpat = enum enum TO enum enum .
enum = (num/['.'num])|"".
The list of connection patterns cpat contains all the patterns, a connection may match
for being printed. An asterisk marks an arbitrary PE-number or port-number. "x .. y"
denotes a range of numbers. If no cpat is given, all connections are listed.

Examples: P* CO 2 * TO * * O all connections leaving PE 2
P* CO 2..10 * TO 2..10 * [Jallconnections between PEs 2 through
10.

D(EBUG) [Y(ES)|N(O)|'1'|'0"] pelist

Like option -d, this command enables or disables the commands DEBUG and TRACE.
In addition, the output produced by these commands may be limited to variables on
specific PEs. Such a limitation has an effect on commands SE(T) and S(HOW) without
pelist. The PE in pelist can be abbreviated as P. Y(ES) and 1 enable the output
of DEBUG and TRACE, N(O) and 0 disable it. If pe1ist is specified, it limits the

output of DEBUG and TRACE and installs a default pelist for SE(T) and SCHOW).

If the DEBUG-command is given without arguments, the present settings are printed.
Example: P> D 1 PE 1..5 [0 activates DEBUG and TRACE for PEs 1 to 5
(SET and SHOW now have effect on these PEs)

E(XAMINE) [ProcPath ['"!"" depth]] [selection] {expr},+
The EXAMINE command is used to show the values of Parallaxis expressions.
ProcPath = {'!" Ident}+
Each Ident in ProcPath is either the system name or a procedure name of the
source program.
ProcPath is the path to find a procedure in the procedure hierarchy, when starting on
the active scope. ProcPath defines the desired viewpoint.
depth is the count of recursive activations of the procedure defined by ProcPath.
The Parallaxis expressions are evaluated on all actually active PEs.
If selection is given, the results are only shown for the selected PEs.
Example: P* E !foo!3 i, value > limit [shows the values of variable i
and expression value > limit in the three last recursive activations
of procedure foo.

G(O) [S(TEP) [O(VER)]][T(O) line]

On command level, the program is started; on execution level, an interrupted program is

continued.
With S(TEP), the simulation status is printed after each step. If O(VER) is also present,
proper procedures are simulated in a single step, but not conditionally called
procedures. In Parallaxis-mode, each step is one Parallaxis statement, marked with '!" in
the PARZ program by the compiler. In PARZ-mode, a step is a single PARZ command.

4. Using the PARZ Simulator and Debugger

With argument T(O), the simulation will be interrupted just before the command
indicated by 'line' is executed. Execution will always be interrupted when a breakpos
is reached or if an interrupt is generated from the console (Control-C).
When the program is interrupted, the following is printed:

- reason of interruption (multiple reasons are possible)

- PARZ command that would be executed next

- line number in source code, if known

- part of source code containing that line, if known

- PE activity status
If simulation reaches one of the commands HALT or END, execution terminates. If
execution has been started from the command level, the simulator will return to this
level, while data from the program execution (e.g. variables, stacks) can still be
examined with the command S(HOW). If the program was directly started from the
operating system, PARZ continues to process the command line, e.g. loading and
executing new programs, or terminating.

Example: P> G [starts simulating the loaded program

H(ELP) [command_id]
? [command_id]
This command supplies help information.
Without command_id, a list of all commands is given. If command_id is a valid
command identifier, a description of syntax and functionality of that command is givi
Example: P> H G [explains the GO command.

L(OAD) file ['-' C(OMPILER) |
This command is used to load a program into the simulator and replace a previously loaded
program.
The simulator will enter command level if it was started with command-line option —
otherwise, the loaded program will be executed immediately.
file is an arbitrary string without white space, representing a valid filename
(a standard extension will be added automatically, if it is not provided).
The Parallaxis compiler pa is invoked with the named file as argument, if
- the argument -C(OMPILER) is given,
- file is ending with . p or
-file.pexistsbutnot file. z.
The file $xrf generated by the compiler is loaded as cross reference file.
Otherwise file.z or file is loaded as a PARZ program. If a matching file with
.xrf ending exists, it is loaded as cross reference file.
Example: P* L program [substitutes the interrupted program by "program. z

LI(ST) [trange]

The loaded PARZ program or parts of it are printed on the console.
If program-faults have been discovered during loading, they are marked "@@" in the
listing. A correct program is printed the way it was read. All keywords and identifie
are converted to capital letters. Global declarations are only listed together with the fi
command.

20 Parallaxis Version 2 User Manual

trange = (label ['.."]) | ([label]"..'label).
The optional argument t range selects program-parts by label:
no trange: all commands

X : the command labelled x
X .. : from command x to the last command
Ly : from the first command to y

X ..y : fromcommandx toy
Example: P> LI [lists the global declarations and all program commands.

Two derivatives of the list command and only for Unix systems are:

LI(ST) S(TRINGMATCH) 'string"

All lines in the output of LIST TEXT which also contain st ring are listed.
Lower case and capital letters are not distinguished.

Example: P> LI S "@@" [lists all lines that contain an error marker

LI(ST) P(ATTERN) '"reg_expr"

The same as LIST STRINGMATCH, but reg_expr is a regular expression as used by the

Unix-command grep.

Example P> LI P "PROC.*VECTOR" [J listsall PROC-commands that declare
local vector-variables

M(ODE) [C(OMPILER) | INTERPRETER)]

This command switches between Parallaxis- and PARZ-mode.
Without argument the active mode is shown. The default setting at start is Parallaxis-
mode. Argument C(OMPILER) switches to Parallaxis-mode: line numbers in
BREAKPOINT, GO and STEP commands now define source code lines. In single-step
mode, execution stops before Parallaxis statements.
Argument I(NTERPRETER) switches to PARZ-mode. Now line numbers refers to
PARZ labels and each PARZ command is a single step.

Example: P* M I [switch to PARZ mode (interpreter)

N(OTRACE) [vardesc]

Value tracing as set for specific variables by the TRACE command in PARZ or the T(RACE)-

debugger command can be deactivated for single variables or for all blocks where it was active.
The NOTRACE debugger command has the same form and effect as the NOTRACE
PARZ-command. vardesc is a PARZ variable; if it is indirect, the index-variable
mustn't be a vector. If vardesc is specified, tracing is disabled for all memory blocks
(that is Parallaxis variables), beginning with that PARZ variable. Without vardesc,
all tracing is disabled.

Example: P* N SI0:1 [disables tracing on all blocks beginning with ST0: 1

Q(UIT)
This command terminates the simulator, and returns to the operating system.

4. Using the PARZ Simulator and Debugger

R(ECORD) [O(FF)|N(O)|'0'| SCHORT) | '1' | L(ONG) | '2']
The simulator has two forms of recording commands of PARZ programs. Similar to the co:
mand-line option -r, the RECORD-command can choose between these forms or disable rec

ding.

O(FF), N(0), 0 : Recording is disabled.

S(HORT), 1 : Record command-character and number of active PEs (vect
commands only)

L(ONG), 2 : Record each command and PE-activity status for vector
commands

Every change to the record-mode and all load-activities are mentioned in the record
file. If no commands are recorded in a record-file, the file will be removed when exiti
the simulator. Commands of any recording mode which are marked R in the label-
definition will always be recorded. Without arguments, the RECORD command prir
the current recording mode. See appendix B for details.

Example: P* R 2 [activates the long recording format.

S(HOW)
This command shows the current memory contents. Several subcommands allow different
views of the memory.

L)

In the following descriptions of the sub-commands holds:

adrlist={ (adr[".."])|([adr] . adr) },*.

adr is an integer number, used as an absolute address.

pelist always specifies the PEs, the data of which will be shown. If apelist
is omitted, the default PE-list (set by the DEBUG-command) is used.

Show memory contents, ordered by absolute addresses

S(HOW) (M(EMORY) | H(EAP)) [S adrlist] [V adrlist] [pelist]

Data in activation records have positive addresses, global data starts at address 1. Dz
closer to the activation record of the actual procedure has a higher address. The SHO
MEMORY command shows each PARZ variable value together with its absolute
address, the PARZ variable descriptor, the PROC-label of the procedure declaring t
variable, and (if known) the name of the corresponding Parallaxis procedure.

Data allocated on the heap by the NEW-command have negative addresses. The blo
allocated first, gets —1 as highest address. Blocks allocated later reside at lower
addresses in heap space. Argument M(EMORY) shows all memory-cells, while
H(EAP) accesses the heap (i.e. negative addresses) only. Arguments S and V define t
address ranges on the control processor (S = scalar) and on the PE-array (V = vecto
that will be shown.

adrlist is alist of address-ranges, the contents of which will be shown successive
If an adrlist is empty, all addresses of the appropriate memory type are shown.]
both arguments S and V are missing, the whole memory will be shown. If only one
argument is specified, that memory part is shown. If one of the address-ranges is out
range with both bounds, an error will be reported, however, if a part of a specified
address range exists, it will be shown.

Examples: P* S H g shows the whole scalar and vector heap.

P* S MS g shows the whole scalar memory.

P* S H SV -3..-1 PE 1,40 shows the whole scalar heap and
the heap addresses -3 to -1 on PEs |
and 4.

22 Parallaxis Version 2 User Manual

2) Show contents of parameter-stacks

S(HOW) P(ARSTACK) [S[depth]] [V[depth]][pelist]
The scalar and vector parameter stacks are manipulated by the PARZ-commands
PUSHS, POPS and PUSHV, POPV. The command SHOW PARSTACK shows a
specific number of stack elements, beginning at the top of stack.
depth is an integer > 0.
Arguments S and V specify the number depth of elements to be shown of the scalar
and vector stacks. If depth is missing, the whole stack is shown. If both arguments S
and V are missing, all stacks are shown completely.
'* ToS *'in the output marks the top of a stack. If '* BoS *'(bottom of stack)
terminates the output, the whole stack was shown, otherwise the end of printing is
marked ' .

Example: P* S P V5 [0 shows the top five elements of the vector parameter stacks

3) Show callstack and memory contents ordered by activation records
S(HOW) C(ALLSTACK) [C(HAIN)[A(CTIVITY)]]

[S[depth]] [V [depth]][pelist]
Each procedure call generates an activation record on top of the callstack, which is removed by
the corresponding RETURN command. The following data held in an activation record can be
shown by the command SHOW CALLSTACK:
- label of the PROC command and the corresponding procedure name in the Parallaxis-
program (if known)
- label of the calling command and the source-code line number (if known) with the
calling Parallaxis statement
- PE-activity status saved by conditional calls
- local scalar and vector data of a procedure or global data in the activation record of the
main program.
depth is an integer > 0.
In the output, each PARZ variable is identified by its absolute address and the PARZ
variable descriptor. Without arguments, all information in the callstack is shown. By
C(HAIN), the whole call-chain information is shown. With A(CTIVITY), the saved
PE-activity status information is shown as well. The arguments S and V specify the
number depth of activation records starting with the actual activation record that will
show their scalar or vector data. If argument depth is missing, all activation record
variables of the corresponding memory type are shown. If only one of the arguments S
or V is present, only variables of that type are shown. If variables of an activation record
are shown, the calling information is printed too (otherwise only shown with arguments
CHAIN ACTIVITY).
Example: P* S CV3 PEl..4 O shows the calling information and vector variables
on. PEs 1 through 4 of the topmost 3 activation
records

4) Show memory-blocks, corresponding to Parallaxis-variables
S(HOW) V(ARIABLE) vardesc [P(ROC) label [D(EPTH) depth]]
pelist [AS declaration]
Similar to the DEBUG-command, a PARZ-variable and a declaration define a memory-block,
that represents a Parallaxis-variable.
vardesc and declaration define a memory block as described for the DEBUG-
command. If AS declaration is missing, the memory block consists of vardesc.

4. Using the PARZ Simulator and Debugger

If pelist is omitted, only variables on active PEs are shown. The output format is
identical to the one used by the DEBUG command. If an indirect address points to :
nonexisting vector-variable, this will be indicated by the string '<non-ex>', if the
variable exists on other PEs.
P(ROC) changes the view on the stack to the topmost activation record of the procedu
with PROC-label 1abel. This may be useful if more than one procedure with the sar
nesting level is on the call-stack.
If the PROC with 1abel has been called recursively, argument D(EPTH) defines hc
many different activations of the procedure are looked at. With P(ROC), for each
memory block shown, the distance of the viewpoint to the top af the callstack is state
The actual activation record has distance zero.

Example: P* S V VI1:7 PE2..50 showsPARZ variable VI1:7 onPEs2 throug

5) Show predefined variables
S(HOW) S(PECIALS){ MAXTRANS | ACTTRANS | DONE | TERMCH |
SRESULT | VRESULT },* pelist
Predefined variables, which are either read-only or write-only, are treated specially by the
simulator, so a special subcommand exists to show their contents.
If a list of variable names is specified, their contents are shown, otherwise the conter
of all predefined variables is printed.
pelist is effective only for printing VResult.
Example: P* S S [0 shows the contents of all predefined variables

SE(T) vardesc pelist ['-'| NOT] VarConst

With this command, memory contents may be manipulated from execution level. This com
mand can be executed on both levels, but changes made on command level won't have any
fect, since the starting PARZ program will destroy all previous data.

This command has the same effect as the PARZ-command: vardesc := [- | NOT]
VarConst
pelist specifies the PEs that execute the assignment, if vardesc is a vector-
variable.

If pelist is missing, the default PE-list is used, as defined by the DEBUG-commai
Example: P* SE VI3:2 ID [writes the PE-numberto VI3:2 on each PE.

ST(EP) [O(VER)] [(T(O)line)|A(LL)]
This command executes one step of the program. In PARZ-mode, each step is one PARZ co
mand, in Parallaxis-mode, a step is a Parallaxis statement, with the first PARZ command
marked "!".
After each step, the following is printed:
- the PARZ command to be executed next,
- the PE-activity status,
- the Parallaxis source-line number, if known,
- three lines of the Parallaxis source code containing the current line, if known.
With O(VER), procedures that are not conditionally called, are executed in one step
T(O) 1ine defines a PARZ command that can be reached stepwise, by just pressin,
the RETURN-key. If the command, specified by 1ine is reached, this will be report
and <RETURN> has no special meaning any more. The stepping-function of

24 Parallaxis Version 2 User Manual

<RETURN> will as well be stopped by another GO- or STEP-command. Argument
A(LL) works like T(O), but no line is defined that will end the stepping-function of
<RETURN>.
Example: P> ST A [goes to the first command,
then executes one step, each time <RETURN> is pressed

STO(P)

On execution level, the interrupted program will be terminated. The simulator returns to com-
mand level if it was started with command-line option —1. Otherwise, command-line proces-
sing continues (exit, if this file was the last file in the command-line).

T(RACE) vardesc string AS declaration
This command has the same form and effect as the TRACE command in a PARZ program. A
memory block is defined that will be printed each time a write-access occurs.
vardesc and declaration describe a memory block that will be traced
string will be printed together with the data block
Example: P* T VIO:2 "multil-2" AS I2 [activatestracingforthetwosuccessive
variables VIO:2 and VIO : 3 with
header "multil-2"

W(ARN) [Y(ES)|'1'|N(O)|'0']
In some situations, like uninitialized data or inactive PEs, runtime warnings are generated. The
WARN command allows to suppress these warnings like the command-line option -w.
Y(ES), 1: runtime warnings are generated
N(O), 0: runtime warnings are suppressed
If no arguments are given, the present setting is printed.
Example: _P* W 0 O no runtime warnings will be generated

WI(DTH) [num]
All bitstrings, representing PE-activity are printed in a block with a default width of 50. The
WIDTH command is used to adjust that block width to the structure of the PE-array.
If num is present, it sets the new output width for bitstrings,
otherwise the existing setting is reported.
Example: _P> WI 30 [all bitstrings are printed with width 30

The Empty Input

Normally, the empty input has the only effect of generating a new input prompt. After a com-
mand STEP TO or STEP ALL, the empty input causes the simulator to execute one program
step. If a continuous simulation is interrupted from the terminal (Control-C), pressing
<RETURN> has the same effect as the command STEP ALL.

MORE-Ilike output
If MORE-like output is active on command level (see option -m), the following prompt appears
after each screen full with printing:

-- MORE (help with h) --

4. Using the PARZ Simulator and Debugger

The following inputs are possible; they must not be terminated by <RETURN>:

<space>
num<space>
<RETURN>
num<RETURN>
a
h or ? :
If num is zero, it will be ignore:

: the next screen is printed

: screen size is set to num, the next screen is printed

: the next line is printed

: the next num lines are printed

: the function currently producing this output is aborted
: help is given

d.

26 Parallaxis Version 2 User Manual

5 The Model of Massive Parallelism

The Parallaxis language model was designed to allow structured and machine-independent pa-
rallel programming in a high level language, similar to sequential Pascal or Modula-2 [Wirth
83]. Each Parallaxis program contains a functional description of the parallel machine architec-
ture which it is about to use together with the parallel algorithm that refers to the architecture
specification. This virtual specification is at a level of abstraction, of course, and is translated
by a compiler to match any given physical architecture, even if it is only a single-CPU von-
Neumann simulator. We restricted our flexible model to SIMD structures with identical pro-
cessing elements (PEs).

An application program may specify number and dimensional arrangement of PEs as well as
the interconnections between them. For this reason, all PEs have the same number of bi-direc-
tional ports, which may be connected to ports of other PEs or remain unconnected. Homoge-
nous, scalable networks are preferred for clarity and are easy to specify in Parallaxis. However,
arbitrary interconnection structures may be specified as well.

Corresponding to the machine model of a processor network controlled by a single, central
host, variables may be declared either for the controlling host (using the declaration keyword
scalar) or for each of the PEs (using vector). Each variable is strictly typed, like in Mod-
ula-2, and there may be no vector variables in an expression that is to be assigned to a scalar
variable. Vectors may be used inside explicitly marked parallel blocks or operations only, while
scalars may also appear in parallel vector expressions (requiring a duplication or broadcast of
that particular value).

identical PEs
with local memory

A LA

control

interconnection
network

Figure 5.1: the abstract machine model

Parallaxis makes the following assumptions about its abstract parallel machine, whether it is
physically present or simulated:

e SIMD structure with
- central control unit
- variable number of processing elements (PEs)
- flexible (re-routable) communication network, that is
it can be used as if forming any topological structure

e all operations occur synchronously
e all PEs are identical in processor and memory structure
¢ cach PE has the same number of bi-directional ports for sending and receiving data

e one process per PE

5. The Model of Massive Parallelism

Within the realm of this machine model, the programmer may now choose a certain topologic
structure for the communication network to achieve the best match possible between archit
ture and algorithm for a given problem. For each application, the number of PEs and the ne
work topology is semi-dynamic, that is, all topologies used have to be specified prior to
compilation, but the program may switch between them during execution.

Parallaxis provides a language construct for building parallel statement blocks. However, tl
control flow inside such a block is strictly sequential and may not be confused with the moc
of parallelism as used in Occam [Inmos 84]. Parallaxis executes each statement sequentially
seen from the host processor, sending (or broadcasting) that particular command to the sele
ed set of PEs. According to SIMD-philosophy, for a large number of processors, each one p
forms the same computation on local data. There is no such thing like explicit programming
individual PEs as with MIMD-systems. Compared to MIMD-systems, there is no overhead f
synchronization mechanisms, data locking, multi-process time-sharing operating system, ar
so on. However, not every algorithm is appropriate for the less flexible SIMD vectorization, t
may be parallelizable for the more general MIMD-systems.

Parallaxis language constructs for explicit parallelism:

e configuration / connection
specification of the desired network structure

e parallel - endparallel
selection of processing elements for subsequent parallel processing

e store / load / propagate / send / receive
data exchange to/from host, parallel data exchange among PEs

e reduce
data reduction from vector to scalar

e if / case / while / repeat / for

parallel branching and loops (the construct 1oop is always sequential)
¢ X =€

vectorized assignment

Statements of a parallel block will be executed chronologically sequential but "spaced", that
vectorized for a number of processors. Following the keyword parallel may be an optior
PE selection, which yields the same effect as a parallel branching statement. Here, only a subs
of previously active processors perform the then-branch of an i f-selection, while its com
plement set performs the e 1se-branch. On real SIMD systems, these cannot be operated ir
parallel, so they have to be serialized by the Parallaxis system.

Data exchange among PEs using propagate, send or receive may only occur inside
parallel block, because here data exchange applies to groups of processors only, not to a pair
individual PEs. Which PEs participate in a data exchange operation (the so called "active" PE
and which don't, is determined by its surrounding static and dynamic selections:

1. the comprising parallel block, and
2. all surrounding (and possibly nested) branching or loop constructs.

28 Parallaxis Version 2 User Manual

6 The Parallaxis Programming Language

6.1 Relation to Modula-2

Parallaxis was derived from Modula-2 by Thomas Braunl [Braunl 89d]. Language constructs
identical to Modula-2 won't be explained here. Refer to the Modula-2 manual [Wirth 83] for
further information. Parallaxis has the following data types:

e simple and real types
- INTEGER
- CARDINAL
- subrange
- enumeration
- CHAR
- BOOLEAN
-REAL
- Pointer types: POINTER TO ...

[0..MAX(INTEGER)]

(FALSE, TRUE)

e structured types

- Arrays: ARRAY ... OF type
a multi-dimensional array:
ARRAY range_a, range_b OF typeis treated as
ARRAY range_a OF ARRAY range_b OF type

- Records: RECORD ... END

- Sets: SET OF stype
Sets have no limitations in size and are treated as ARRAY stype OF BOOLEAN,
for there are no bit-manipulating commands in PARZ.

- Standard-Set: BITSET = SET OF [0 .. 31]

The following control structures from Modula-2 are implemented in Parallaxis:
(comments are also enclosed in "(*" and "*)")

e IF .. THEN ...{ ELSIF ..THEN ... }[ELSE ...] END
e CASE..OF.. [ELSE.. JEND

e WHILE ... DO ... END

e FOR..TO..[BY ...]DO ..END

e REPEAT ... UNTIL ...

e LOOP ... END

e WITH... DO ... END

The conditions in all control structures may be scalar or vector expressions. However, EXIT
and RETURN must not occur within a vector statement-block.

Parallaxis provides the following predefined constants:

e TRUE boolean constant for true

 FALSE boolean constant for false

« EOL char constant for end-of-line

6. The Parallaxis Programming Language

e PI real constant (3.14159..)
e« NIL nil pointer

and scalar read-only variables:

e termCH terminating character during a read-operation;
it may be read only after a read-operation.

¢ Done boolean value set after an I/O-operation or a graphic operation
signals success of an operation.

Concepts from Modula-2 that are not supported in the present implementation:
¢ module concept
e procedure types

e open array parameters

Features available in Parallaxis, but not in Modula-2 (see syntax in appendix A):

¢ multiple comparisons
A boolean expression may consist of any number of comparisons.
All of them have to be TRUE to make the whole expression TRUE .
E.g.: IF 1 < x < 100 THEN ...

e power operator "x*"
The power operator has the highest priority and is right-associative.
E.g.: x 1= y**3.0;

¢ constant arrays and records
A structured constant may be expressed by its type-name followed by values
(of appropriate type) in parentheses.
E.g.: TYPE field = ARRAY [1..3] OF integer;
triple = RECORD x,y,z: real END;

a
b

field(1,2,3);
triple(2.0, PI, 6.1);

6.2 Specifying Processor Networks

Since in Parallaxis neither the topology nor the number of the processor elements is fixed, ea
program can freely choose its configuration; it will be transparently mapped to the physical
hardware of the system. Two steps are necessary to specify the virtual form of the network
structure: First, Parallaxis is told the number of processing elements one wants to use and hc
they will be arranged in dimensions (CONF IGURATION specification). This almost exactly
takes the form of Modula-2's array declaration, with the distinction that we are dealing here
with processors instead of data elements. Although we create some neighbor relation betwe
the PEs by this declaration, this does not specify any connections between processors, which
reserved for the second step. There, we may specify a transfer-function (from a general PE
sition to its relative neighbor) for every processor-port in this topology (CONNECTION spe
fication). Each transfer-function has a name (the exit-port's name) and also states the name
the corresponding entry port on its neighbor-PE after a period.

30 Parallaxis Version 2 User Manual

The arrangement of the processor elements can be a one or more dimensional array of PEs. A
configuration specification states the configuration's name and a sequence of ranges, separated
by commas. There are two possible types of ranges:

e [a .. b] formsarangefromatob (a <= b).
e [a] forms a range of a elements from 0 to a-1 (a > 0).
Example 6.1:

CONFIGURATION example [2 .. 41, [5 .. 8 1;

defines a two-dimensional grid of 12 PEs in 3 rows by 4 columns

4,5 4,6 4,7 4,8
9 10 11 12

35 3,6 3,7 3.8
5 6 7 8

2,5 2,6 2,7 2,8
1 2 3 4

Every PE has a unique identification number. This number is in the range from 1 to the number
of PEs specified and can be accessed in Parallaxis programs by the vector constant id_no.
This number does not reflect the special topological arrangement of the processor elements, it
is just a flat labelling. On a higher level, there are vector constants DIV to specify the position
within the i-th logical dimension. The relation between 1d_no and DIV is explained in exam-
ple 6.1 with an arrangement of twelve PEs in a two-dimensional array of processor elements.
The lower number shows the 1d_no, while the upper numbers show DIM1 and DIM2.

After the number and the topology of the processor elements are defined, the definitions of
connections between the PEs follow the keyword CONNECTION. Each "transfer function"
defines the connection of one port for every PE of this configuration.

Each transfer function begins with the output-port name, followed by a colon (see the complete
syntax in appendix A). Now, a general source PE reference for the output direction is given in
a form similar to an array access in Modula-2. There may be undeclared free variables inside
a transfer function, defining this connection for each possible value according to the
CONFIGURATION specification. Then follows a single arrow (—>) denoting a one-way (uni-
directional) connection or a double arrow (<->) denoting a two-way (bi-directional) connec-
tion. At last, the general destination PE is given in the same form as the source PE, again rep-
resenting a subset of all declared PEs, followed by a period and the input-port name. While the
dimensions of the source PE normally contain free variables (or constant values to build irreg-
ular topologies), the destination PE normally has an expression involving the free variables of
the source PE in each dimension. Thus, a network topology is constructed by simply writing
down the interconnection relation in functional form.

6. The Parallaxis Programming Language

Example 6.2:

CONFIGURATION grid [1..4],[1..5];

CONNECTION right: grid[i, j] -> grid [1i ,J+1].left;
left : grid[i,j] -> grid [i ,3j-1].right;
up : grid[i, j] -> grid [i+1l,J].down;
down : gridf[i,j] -> grid [i-1,]J 1.up;

(* Defines a grid of 20 PEs with 4 ports/connections per PE,
connecting each PE to its 4 nearest neighbors.

The open endings at the left,right, up and down borders indicate
that all PEs have four ports, but some ports remain unconnected.*)

The input selection must have one expression for each dimension of the configuration.

There are three extensions to the basic form of topology specification:
e composed connections,
e parametrized connections and

¢ broadcasting connections.

Composed connections are essential for specifying complex topologies, like a tree structu
(see example 6.3) or a perfect shuffle network. Each tree node PE has three ports: its father,

left son, and its right son. All nodes are arranged in a single dimension so that the left son o
each PE has twice the position number while its right son has twice plus one. With this infc
mation, it is straightforward to specify the connections for both son-nodes, but with the fath
connection we are in trouble, since we cannot tell whether a general PE is the left or the rig
son of a different PE.

32 Parallaxis Version 2 User Manual

Example 6.3: tree structure with composed transfer function

tree structure
(using a conditional function)

CONFIGURATION tree [1..15];

CONNECTION son_1 : tree[i] . tree[2*i].father;
son_r : tree[i] - tree[2*1 + 1].father;
father: tree[i] - {even(i)} tree[i div 2].son_1,
{odd (i)} tree[i div 2].son_r;

We solve this problem with a composed connection, resembling composed mathematical func-
tions. Boolean expressions (the discriminants) in curly brackets separate the cases from each
other, separated by commas. In our tree topology, all even-numbered PEs are specified to be
left sons while all odd PEs are right sons. With this topology specification we may propagate
data both downward and upward the tree structure.

Composed connections are especially needed for complex topologies, in the case of our bi-di-
rectional binary tree, we could have also used the double arrow (-) in the two son declarations
to get away without defining the more difficult father relation.

Example 6.4: hypercube topology

CONFIGURATION hyper [2] [2] [2] [2];
CONNECTION go(1l): hyper[i,j, k,1] -
hyper[(i+1)mod 2, 3j,k,1]1.g0(1);

[Jgo(2): hypertli,j, k,1]
\ hyper([i, (j+1)mod 2,k,1].g0(2);

go(3): hyperf[i,j, k,1] -
hyper[i, j, (k+1)mod 2,1].go(3);

go(4): hyper[i,j, k,1] -
hyper (i, j, k, (1+1)mod 2].go (4);

hypercube structure

\ (using parametrized functions)

6. The Parallaxis Programming Language

Parametrized connections do not increase the expressive power of the network specification
did the composed connections; they just simplify data exchange through highly symmetrica
topologies, as the hypercube example 6.4.

Here, the port names are no proper identifiers, but parametrized names with single integer v
ues in parentheses. Referencing directions by numbers may be much more convenient for dz
exchange in this case. A program can now perform a propagate operation with a computed
rection (e.g. in scalar variable 1) like the following:

propagate.go (i) (x);
Broadcasting connections are 1:n connections, that is a particular PE's output port is con-
nected to several Pes' input ports. They do not increase the expressive power of the networl

specifications; but simplify data exchange for the broadcasting of values.

Example 6.5: grid structure with broadcasting transfer function

4,1 4,2 4,3 4,4 4,5
grid structure
* ‘ ‘ (using broadcasting function)

3,1 32 33 3,4 35

& 1 & 1

21| | 22|] 23| | 24| | 25
| N N W
L] | 12| | 13]|14]] 15

I N N !

CONFIGURATION grid [1..41,[1..51;
CONNECTION b_out: grid [i,1] -> grid [i,2..5].b_in;

The specified range must be a scalar constant range. Such a connection definition represent:
list of connection definitions each with a different constant of the specified range.

34 Parallaxis Version 2 User Manual

Example 6.6: some more topologies and their specification in Parallaxis

Torus Perfect Shuffle Network
(2-dim. grid wrapped around)

L

i

CONFIGURATION torus [0..3],[0..4]; CONFIGURATION ps [8];

CONNECTION CONNECTION
right: torus[i, j]l<->torus[i, (j+1)mod 5].left; exch :ps[i]->{even(i)} ps[i+l].exch,
up : torus[i,j]<->torus[(i+1l)mod 4,3].down; {odd (i)} ps[i-1].exch;

shuffle:ps[i]->{i<4} ps[2*i].shuffle,
{i>=4} ps[(2*i+l)mod 8].shuffle;

Hexagonal Mesh Quadtree

CONFIGURATION hexa [3],[5]; CONFIGURATION quad[0..84];

CONNECTION CONNECTION
right: hexali, j] <-> hexal[i ,j+1].left; childl : quad[i] ~ quad[4*i+l].parent;
up_l : hexal[i,j] <-> hexal[i+l, j—i mod2].down_r; child2 : quad[i] °~ quad[4*i+2].parent;
up_r: hexal[i, j] <-> hexa[i+1j+1-i mod2].down_1; child3 : quad[i] °~ quad[4*i+3].parent;

Multiple Topologies

Parallaxis permits three forms of multiple topologies within a program. All three forms may be
used in any combination.

a) Multiple disjointed topologies may be declared "at different points in time" in disjoint
procedures. These different topologies cannot have any connections with each other, because

6. The Parallaxis Programming Language

they are established at different times. This form of multiple topologies is similar to starting
several Parallaxis programs after each other with a scalar data exchange. Procedures that ha
a topology definition must not be called from another procedure that also has a topology de
nition. A Parallaxis program with more than one topology will have as much PEs as the large
topology has.

Example 6.7:
PROCEDURE ABC;

CONFIGURATION ring [100];

CONNECTION right: ring[i] <-> ring[i+1l].left;
BEGIN
END ABC;

PROCEDURE XYZ;
CONFIGURATION grid [10],[20];
CONNECTION right: gridfli, j] <-> gridli, j+1]1.left;
up : gridf[i, j] <-> gridf[i+1, j].down;
BEGIN
END XYZ;

b) Multiple overlay topologies may be declared on the same set of PEs in the same dec
ration part. With this form of multiple topologies, the programmer can solve different probler
that need different topologies on the same set of PEs with the same data. This is like having
"different views" of the same set of PEs. Therefore, tehy share the same data space and on
a single vector declaration applies to all configurations. To declare multiple overlay topologi
on the same PEs, the programmer has to declare each of the configurations after the same ke
word CONF IGURATION.

The different topologies must have the same number of PEs, for they describe the sar
set of PEs. These topologies have the same ports and the same vector variables.

Example 6.8:

CONFIGURATION grid [5]1,[31;
tree [1..15];
CONNECTION right: grid[i, j] <-> grid[i,j+1].left;
up : grid[i, j] <-> grid[i+1, j].down;

CONNECTION 1lchild: tree[i] <-> tree[2*i].parent;
rchild: tree[i] <-> tree[2*i+l].parent;

36 Parallaxis Version 2 User Manual

c) Multiple disjointed topologies may be declared on disjointed sets of PEs to exist con-
currently. For each topology, PEs have different ports and different vector variables. The PEs
of each topology are continously labelled. All disjointed topologies are declared with separate
keywords CONFIGURATION. All vector variables and all connections declared after the defi-
nition of a configuration are assigned to this previous topology. Each group of PEs has a dif-
ferent data space and therefore requires individual vector data declarations. Each connection
definition must use at least one configuration name from the previous configuration declara-
tion. The programmer may also specify connections between different configurations of the
same declaration part.

Example 6.9:
CONFIGURATION body[l..n];

CONNECTION n: body[i] -> body[i+1l].n; (* Connection for body only *)
VECTOR a,b,c: INTEGER; (* Variables for body only *)

CONFIGURATION act([l..n],[1l..n];
CONNECTION r: act[i,j] -> actl[i,j+1].r; (* Connect. for act only *
u: act[i, j] -> act[i+l,J].u;
x: body <-> act[i,1l..n].y; (* Con. between act and body *)
(* identical to: y: act[i,j] <-> bodyl[i].x *)

VECTOR k,1,m: INTEGER; (* Variables for act only *)
body act
T
/ 3 / 10 11 12 \
abc kIm kim kIm
A A A A
T
7 8 9
abc klm kim kIm
1 4 5 6
abc / \klm kim klm/
1 T

)))

6. The Parallaxis Programming Language

6.3 Scalar and Vector Data

In sequential programming languages, all variables, parameters and function-results belong
one processor. In Parallaxis, however, the programmer has to tell the system whether a variab
parameter or function-result belongs to the scalar host or the parallel processor elements. Tt
is done with the keywords SCALAR (for the control processor) and VECTOR (for the process
elements), replacing Modula-2's VAR, which is only used to mark call-by-reference paramete
in Parallaxis. Each procedure parameter and a possible function-result have to be preceded |
either SCALAR or VECTOR to identify whether these values belong to the host or the parall
PEs. The following rules apply for assigning values to variables or parameters:

¢ scalar values may be assigned to vector variables (duplicating scalar values), but
e avector value mustn't be assigned to a scalar variable

¢ binary operations with at least one vector value will produce a vector-result

¢ there mustn't be a vector index to a scalar array

* two types are assignment compatible if

- the types have the same name

- both types are non-structured types and have the same definition

- both types are subranges of the same type and the types have common elements

- one type is a subrange of the other type

- the assigned value is a string and the variable is a one-dimensional array of CHAR
with at least (string_length + 1) elements

- they are both pointer types and point to equal types.
The constant NIL may be assigned to any pointer variable.

- the standard types BOOLEAN, BITSET, CHAR, POINTER, INTEGER and REAL
are incompatible. (CARDINAL is a subrange of INTEGER)

Vector variables that are declared in a declaration part which contains a topology defintion, ¢
only be accessed within a parallel block, a REDUCE expression or a LOAD or STORE operati
which use the corresponding topology. The special constants DIM; can only be accessed, if t
used topology can clearly be determined.

6.4 Vectorized Execution

Because of the distinction between control processor and parallel processor elements, the
evaluation of expressions and the execution of statements has to be distinguished, too. Al-
though the control processor controls the execution, there is a difference between the executi
of statements which contain vector-components and the execution of statements without the
A statement without a vector-component is executed as in conventional programming langt
ges, especially Modula-2. If all arguments are scalar, the operation is executed by the contr
processor, but if there is at least one vector argument, the operation is exectuted in parallel
the processor elements. To separate vectorized execution from normal execution, Parallaxi:
uses the keywords PARALLEL and ENDPARALLEL to embrace a parallel statement sequenc
This block structure must not be nested and vector commands may only appear inside such
block. Outside a parallel block vector variables are only allowed within a REDUCE expressi
or a LOAD or STORE statement (cf. section 6.5 and 6.6). At the beginning of the parallel blo
it is possible to select the topology and activate a subset of PEs using a selection-expressior
after the keyword PARALLEL. To specify the used topology the PE selection may be heade

38 Parallaxis Version 2 User Manual

by the name of the topology used. If there is more than one possible topology, the programmer
must supply the configuration name.

A selection-expression is a list of activation expressions separated by commas. This list must
contain as many activation-expressions as the processor configuration has dimensions. An ac-
tivation-expression is a dimension-wide activation of processor elements within the processor
arrangement and takes the following forms:

1. "[" const_int_expr [".." const_int_expr]
{ "," const_int_expr [".." const_int_expr] } "]"
Static activation of all PEs inside these ranges
2.
Static activation of all PEs of that particular
dimension
3. "[" bool_expr "]"
Dynamic activation according to boolean
vector expression
4. "["int_expr "]"
Dynamic activation according to integer vector
expression (probably involving id_no or dim;)
5. "["int_expr ".." int_expr "]"
Dynamic activation of a subrange of PEs of that
particular dimension

The compiler can analyze the first two forms at compile time and produces a static activation

in the PARZ-program for them. For formats 3 to 5, the compiler has to use dynamic PE activa-
tion. This is done by replacing the selection construct by " [*] " to select all PEs, and branching
with vector conditions at run-time. The following example shows the translation of a dynamic
activation:

Example 6.10: Dynamic PE selection

CONFIGURATION example [10],[10];
CONNECTION (* ... *);
SCALAR x,y : INTEGER;

PARALLEL [1..3]1, [x .. VvIl;

(* statements *)
ENDPARALLEL

will be transformed into:

PARALLEL [1..31,[*1;
IF x <= dim2 <= y THEN
(* statements *)
END
ENDPARALLEL

6. The Parallaxis Programming Language

Control flow for branchings and loops with vector expressions differs a lot from their executi
with scalar expressions. While a scalar branching executes exactly one branch, several bran
es might have to be executed for vector branchings, since the local results of a vector expressi
may be different for each PE. Each processor element is active in at most a single branch, b
the control processor has to execute all branches with at least one active PE. Branches with 1
active processor element will be skipped.

Loops with vector control expressions will be executed until no processor element is active a
more. The control expression is evaluated each time for all PEs that were active at the beginni
of the loop. Thus, during each pass through the loop, some PEs may be switched off until terr
nation of that loop pass. They may become active again, however, during the next pass throu,
the loop, as shown in example 6.11.

Example 6.11: Alternating activation of processor elements in a loop

(* at least 2 PEs ¥*)
x := 0;
WHILE EVEN(id_no + x) DO
(* loop body *)
x := (x + 1) MOD 2
END;

6.5 Parallel Data Exchange

The following statements are used to exchange data between the control processor and the p
allel PEs (LOAD and STORE), and among the PEs itself (PROPAGATE):

e LOAD "(" vector_variable "," scalar_variable ")"
puts the data of a scalar array (of appropriate size) in a vector variable, e.g.
CONFIGURATION topo [1..201];
SCALAR s : ARRAY [1..20] OF INTEGER;
VECTOR v : INTEGER;

LOAD (v, s) ;
e STORE "(" vector_variable "," scalar_variable ")"
puts the data of a vector variable into a scalar array (of appropriate size), e.g.:
CONFIGURATION topo [1..20];
SCALAR s : ARRAY [1..20] OF INTEGER;
VECTOR v : INTEGER;

STORE (v, s) ;

In LOAD and STORE, the scalar variable has to be an array of the same data type as the vect
variable. It is also possible to LOAD / STORE structured variables. The scalar array has to be t
enough to send or receive all data transferred to or from the activated PEs. If data from a sing
PE is transferred, the scalar variable doesn't have to be an array.

LOAD/STORE may be used outside a parallel block with an explicit selection (if necessary),
inside a parallel block without an explicit selection. In the latter case only the data of/for acti
PEs is being transferred and placed into/from the next consecutive slot of the scalar array.

40 Parallaxis Version 2 User Manual

There are three possibilities to transfer fewer data elements (see appendix A for details):

a) Select a subset of all PEs for the load/store operation, in analogy to the selection for a
parallel block. E.g.:
LOAD [1..5],[3..7] (v,s);

b) Use a scalar length argument as third parameter in a load/store operation. If the length
argument is given, the size of the scalar variable will not be checked. After the trans-
mission, the actual number of transferred data elements is stored in the length argument (a
var parameter). The length designator has to be a scalar variable of a data type that includes
the range from O to the maximum of activated PEs. E.g.:

max_length := 100;
LOAD (v,s, max_length);

c) LOAD/STORE may also be used inside a parallel block without explicit PE-range-selec-
tion (but with specifying the configuration name in case there are multiple topologies in a
program). In this case, only the data of/for active PEs is being transferred and placed into/
from the next consecutive slot of the scalar array. E.g.:

PARALLEL [odd(id_no)]
LOAD (v,s);
ENDPARALLEL;

¢ PROPAGATE "." direction "(" vector_variable ")"
shifts the local components of a vector variable through the output-port direction into the
corresponding input-port of a neighbor PE, according to the definition of the network topo-
logy (CONNECTION specification), e.g (see example 6.12):
CONFIGURATION list [1..5];
CONNECTION right: list[i] <-> list[i+1l].left;
VECTOR x,y : INTEGER;

PROPAGATE.right (x);
The vector variables in this parallel data exchange mustn't be a structured data type due to im-
plementation restrictions in PARZ, but it may be a component of a structured variable. Only
active PEs participate in the parallel data exchange (selected explicitly for the parallel block or
implicitly by branchings or loops with vector expressions).

Example 6.12: propagating data through a linear list

Before the data exchange:

right right right right right
—»| x=1 | x=2 - x= - =4 |— - =5 [—P
left left left left left
PROPAGATE.right(x)

After the data exchange:

6. The Parallaxis Programming Language

right right right right right
— | x=1 | x=1 - =D x=3 B =g [
left left left left left

The PROPAGATE-statement is, in contrast to the LOAD- and STORE-statement, a true parall
statement and, therefore, has to be used within a PARALLEL_ENDPARALLEL block. For pre
agating data through the network, we have to provide:

* the description of the shift-direction (separated by a period).

* the description of the shifted variable (as an argument in parentheses).

In order to define the shift-direction, we simply use a symbolic direction name as defined in t
CONNECTION specification. So the data exchange statement: propagate.right (x) ;
would send the component-value of x on each active PE one step to its right neighbor in a line
list topology, as shown in detail in example 6.12.

Supplying only the send-direction is sufficient for unambiguous topologies like a grid, since t
compiler is able to derive the corresponding receive-direction from the CONNECT ION spec
fication. In the case of the above list, Le ft would be automatically determined to be the corr
ponding receive-port for right. However, this does not hold for all topologies! So it is no
sufficient for a tree topology, as explained in section 6.2. In this case, the send-direction an
the receive direction have to be appended (with periods). E.g.:

propagate.father.son_1 (x);

is a correct data exchange up the tree from each left son to his father. The data of all "right son
will be discarded.

If there is no connection to an output-port for a PE, or if the corresponding processor eleme
is not active, the send-value will not be received by any PE. This data element is literally bei
pushed "over the edge". In case there is no connection to the input-port of a PE, or the corre
ponding processor element is not activated, then this PE will not receive a new value from ar
where after sending its data element, so the propagated variable keeps its original value for tl
particular PE. A shift of n steps in an open topology will transmit the value from the border
to the next n processor elements. This effect is demonstrated in example 6.13.

There are three extensions to the basic form of data propagation:

1. propagating data several steps at once
A scalar multiplier is added after the send-direction with the caret-character ("~").

Example 6.13: multiple data propagation for the list from example 6.12

PROPAGATE.right"2 (x);
is equivalent to:

FOR i := 1 TO 2 DO
PROPAGATE. right (x) ;
END;

42 Parallaxis Version 2 User Manual

Before the data exchange:

right right right right right
—| x=1 | X=2 - x=3 o X=4 [-] x5 [—
left left left left left

PROPAGATE.right"2 (x) ;

After the data exchange:

right right right right right
— | x=1 | x=1 | x=1 - X=2 [—| x=3 |—=
left left left left left

2. propagating data in computed directions
For parametrized directions, as described in section 6.2, propagate operations may be used with
computed directions.
E.g. for a hypercube:
i = 3*j - 2;
PROPAGATE.dir (i) (x);

3. receiving data in a second argument (preserving the send-value)
This form of the PROPAGATE statement has two arguments, the first being an expression that
will be sent, the second being a variable which will receive the new value.
E.g. for a two-dimensional grid:
PROPAGATE.right (x,y);
is equivalent to:
V:i=x;
PROPAGATE.right (y);

The previouly declared PROPAGATE operations suppose that there are only /:/ connections.
As Parallaxis provides the facility of m:n connections there may be a collision when two or
more PEs are sending a value to the same PE. This conflict may freely be solved by specifying
a REDUCE operator to handle the conflict. This REDUCE operator returns a single result com-
bining all incoming values.The conflict solution with a REDUCE operator is defined by append-
ing the keyword REDUCE followed by a period '."' and the name of the operator to the
PROPAGATE statement. The standard REDUCE operators and how to define an own reduce op-
erator is declared in the following section 6.6. If a collision is detected and no REDUCE operator
is specified, the PARZ simulator will produce a run-time error.

As the PROPAGATE operation can only deal with active sending and active receiving PEs,
there is no way of data exchange between different topologies on different sets of PEs. There-
fore, the data exchange between different topologies would only be possible through the control
processor using STORE and LOAD. This is not acceptable and therefore there are two data ex-
change statements which can handle idle PEs.

¢ SEND out_port "(" vector_expr ")" TO in_port "(" vector_ident ")"
All active PEs will send the result of the vector expression through the specified out_port to
all other PEs. All PEs, including the idle ones, look at their in_port if a value is received. If

6. The Parallaxis Programming Language

a value has reached the in_port the value is assigned to the vector identifier. A REDUCE
operator may be added to handle a collision of values at the in_port in the same way as i
the PROPAGATE statement. The out_port must belong to the active topology.

e RECEIVE in_port "(" vector_variable ")" FROM out_port "(" vector_ident ")"
All PEs will send the value stored in the vector identifier through the given out_port. Th
active PEs will look at their in_ports for an incoming value. If a value is received the val
is assigned to the vector variable. As for the PROPAGATE and the SEND statement there
may be a REDUCE operator added to the statement. The in_port must belong to the activ
topology.

The different semantics of the three vector-vector data exchange statements for data exchan
within one topology is shown in the following picture. The dark PE is assumed to be inactiy
All examples start with the initial data settings of the first picture.

PROPAGATE.ring_out (i, j);

SEND ring.ring_out (i) TO ring.ring_in(3j);

REICEIVE ring.ring_in(j) FROM ring.ring_out (i);

44 Parallaxis Version 2 User Manual

6.6 Data Reduction

There are a lot of problems that can be solved in parallel by using the processor elements to

calculate components of the result. These partial results have to be combined somehow to give
the final result (e.g. numeric integration). Completing this task for n components would take n—
1 sequential operations for the controlling host to compute. Using the PEs themselves in a par-

allel tree-like fashion reduces the amount of time needed to|™ 1d(n)| . This is the motivation for
providing the REDUCE construct. In each reduction step, the number of values is divided by
two, until only a single value remains. This final result is transferred as a scalar to the host. For
REDUCE always transforms a vector into a scalar value, it mustn't be applied to structured data
types. Parallaxis provides the following reduction operators as predefined functions:

¢ MAX maximum of all values

e MIN minimum of all values

¢ FIRST value at the active PE with the lowest PE identification-number (id_no)
o LAST value at the active PE with the highest PE identification-number (id_no)
e AND logic "and" operation of all values (type boolean only)

¢ OR logic "or" operation of all values (type boolean only)

¢ PRODUCT product of all values (numerical types only)

e SUM sum of all values (numerical types only)
(e.g. the number of active processors is: REDUCE.SUM(1))

The use of the REDUCE construct is not limited to the predefined operators mentioned above.
A reduction function may be defined as a function with two arguments and a result, all of the

same type. The function mustn't contain data-exchange operations or the REDUCE operator it-
self, neither direct nor indirect (within a called function). The performed operation should be

an associative and commutative binary operation to prevent strange results. A function that is
used as a REDUCE operator may also be used as a regular function. Example 6.14 shows a RE—
DUCE-operator for adding numbers modulo 12.

Example 6.14:

SCALAR num: cardinal;

PROCEDURE add_mod (VECTOR a,b: cardinal): VECTOR cardinal;
BEGIN

RETURN (a + b) MOD 12;
END add_mod;

num := REDUCE.add_mod (1);

6. The Parallaxis Programming Language

6.7 Standard Procedures

In the following holds:

ordinal denotes an enumeration-, subrange- or integer type
elem denotes the base type for a set

settype denotes the type SET OF elem

string denotes a variable of type ARRAY .. OF CHAR or

a constant string in quotes or apostrophes
pointertype denotes the type POINTER TO elemtype

¢ DEC (SCALAR VAR x : ordinal)
DEC (VECTOR VAR x : ordinal)
decrement variable x by 1 or set the variable to predecessor of x.

e DEC (SCALAR VAR x : ordinal; SCALAR n : INTEGER)
DEC (VECTOR VAR x : ordinal; VECTOR n : INTEGER)
decrement variable x by n or set the variable to the n-th predecessor of x.

e INC (SCALAR VAR x : ordinal)
INC (VECTOR VAR x : ordinal)
increment variable x by 1 or set the variable to successor of x.

e INC (SCALAR VAR x : ordinal; SCALAR n : INTEGER)
INC (VECTOR VAR x : ordinal; VECTOR n : INTEGER)
increment variable x by n or set the variable to the n-th successor of x.

¢ EXCL (SCALAR VAR x : settype; SCALAR y : elem)
EXCL (VECTOR VAR x : settype; VECTOR y : elem)
remove element y from set X.

e INCL (SCALAR VAR x : settype; SCALAR y : elem)
INCL (VECTOR VAR x : settype; VECTOR y : elem)
put element y into set x.

o NEW (SCALAR VAR x: pointertype)
NEW (VECTOR VAR x: pointertype)
allocate memory for one element of type elemtype on the heap and assign the memory
address to parameter x.
¢ DISPOSE (SCALAR x: pointertype)
DISPOSE (VECTOR x: pointertype)
free memory on the heap to which parameter x points.

¢ Write (SCALAR c : CHAR)
Write (VECTOR c : CHAR)
write character c to the active output channel.

o Writelnt (SCALAR i : INTEGER; SCALAR n : CARDINAL)
WriteInt (VECTOR i : INTEGER; SCALAR n : CARDINAL)
write integer number i with a width of n characters to the active output channel.

e WriteCard (SCALAR i, n : CARDINAL)
WriteCard (VECTOR i: CARDINAL; SCALAR n : CARDINAL)
write cardinal number i with a width of n characters to the active output channel.

Parallaxis Version 2 User Manual

WriteReal (SCALAR r : REAL; SCALAR n : CARDINAL)
WriteReal (VECTOR r: REAL; SCALAR n : CARDINAL)
write floating-point number r with a width of n characters to the active output channel.

WriteFixPt (SCALAR r : REAL; SCALAR n, p : CARDINAL)

WriteFixPt (VECTOR r : REAL; SCALAR n, p : CARDINAL)

write floating-point number r with a width of n characters and p decimals to the active
output-channel.

WriteBool (SCALAR b : BOOLEAN)
WriteBool (VECTOR b : BOOLEAN)
write boolean value in b to the active output-channel.

WriteString (SCALAR s : string)

WriteString (VECTOR s : string)

write string s to the active output-channel. Output stops at the first occurence of chr(0) or
after writing all characters of a char array.

WriteLn
write the end-of-line character to the active output-channel.

Read (SCALAR VAR c : CHAR)

Read (VECTOR VAR c¢ : CHAR)

read a character from the active input-channel into variable c.
Read-only-variable "Done" is set appropriately (cf. Modula-2).

ReadInt (SCALAR VAR i : INTEGER)

ReadInt (VECTOR VAR i : INTEGER)

read a number from the active input-channel into variable i.
Read-only-variable "Done" is set appropriately (cf. Modula-2).

ReadCard (SCALAR VAR c : CARDINAL)

ReadCard (VECTOR VAR ¢ : CARDINAL)

read a number from the active input-channel into variable c. A run-time-error will occur if
the number read is negative. This range-check cannot be disabled with option -r.
Read-only-variable "Done" is set appropriately (cf. Modula-2).

ReadReal (SCALAR VAR : REAL)

ReadReal (VECTOR VAR 1 : REAL)

read a floating-point number from the active input-channel into variable r.
Read-only-variable "Done" is set appropriately (cf. Modula-2).

ReadBool (SCALAR VAR b : BOOLEAN)

ReadBool (VECTOR VAR b : BOOLEAN)

read a logical value from the active input-channel into variable b.
Read-only-variable "Done" is set appropriately (cf. Modula-2).

ReadString (SCALAR VAR s : string)

ReadString (VECTOR VAR s : string)

read a string from the active input-channel into variable s.
Read-only-variable "Done" is set appropriately (cf. Modula-2).

Openlnput (SCALAR s : string)

open the file with name s as new input channel. If s is an empty string, the system will inter-
actively prompt for a filename. The previous input channel is closed. If the file cannot be
opened for input, standard-input becomes the active input channel.

Read-only-variable "Done" is set appropriately (cf. Modula-2).

6. The Parallaxis Programming Language

¢ OpenOutput (SCALAR s : string)
open the file with name s as new output channel. If s is an empty string, the system will
interactively prompt for the filename. The previous output channel is closed. If the file c
not be opened for output, standard-output becomes the active output channel.
Read-only-variable "Done" is set appropriately (cf. Modula-2).

¢ Closelnput
close the active input channel. Standard input becomes active input channel.

¢ CloseOutput
close the active output channel. Standard output becomes the active output channel.

e DEBUG (...)
produce PARZ debug commands for all variables, supplied as parameters.

e TRACE(...)
produce PARZ trace commands for all variables, supplied as parameters. Tracing vector
arrays with vector indices isn't allowed. The values of the variables are printed when exe
cuting this command and every time an assignment is performed on them.

¢ NOTRACE (...)
NOTRACE
switch tracing mode off for all variables supplied as parameters, or for every variable (wi
out arguments). It is not checked, whether a variable is currently being traced.

¢ HALT
stop program execution.

Parallel write operations to a terminal device result in the PE values printed in their consecuti
order. Characters appear on the same line, all other types require one line per PE. Parallel re
operations from a terminal device read the input data and distribute it consecutively to the P!
in the order of their declaration. Changing between formatted (e.g. integers) and unformatte
input (e.g. single characters) may result in left-over carriage returns that have to be read by
sequential read operation.

6.8 Standard Functions

In the following holds:
TYPE name denotes a type identifier.
PORT name denotes a port identifier.

e Cos (SCALART: REAL): SCALAR REAL
Cos (VECTOR r : REAL) : VECTOR REAL
returns cos(r).

¢ Sin (SCALAR r: REAL) : SCALAR REAL
Sin (VECTOR r: REAL) : VECTOR REAL
returns sin(r).

e Tan (SCALAR T : REAL) : SCALAR REAL
Tan (VECTOR r : REAL) : VECTOR REAL
returns tan(r).

e ArcCos (SCALAR r: REAL) : SCALAR REAL
ArcCos (VECTOR r : REAL) : VECTOR REAL
returns arccos(r).

Parallaxis Version 2 User Manual

ArcSin (SCALAR r: REAL) : SCALAR REAL
ArcSin (VECTOR r : REAL) : VECTOR REAL
returns arcsin(r).

ArcTan (SCALAR r: REAL) : SCALAR REAL
ArcTan (VECTOR r : REAL) : VECTOR REAL
returns arctan(r) in the range of - /2 - + /2.

ArcTan2 (SCALAR 1, r2 : REAL) : SCALAR REAL

ArcTan2 (VECTOR rl1, 12 : REAL) : VECTOR REAL

returns p=arctan(r1/r2) in the unambiguous range of -pi - +pi.

The signs of rl and r2 are equivalent to the signs of sin(p) and cos(p).

Exp (SCALAR r: REAL) : SCALAR REAL
Exp (VECTOR r: REAL) : VECTOR REAL
returns the exponential function e'.

Ln (SCALAR r: REAL) : SCALAR REAL
Ln (VECTOR r: REAL) : VECTOR REAL
returns the natural logarithm In(r).

Sqrt (SCALAR r: REAL) : SCALAR REAL
Sqrt (VECTOR r : REAL) : VECTOR REAL
returns the square root R(r) .

ABS (SCALAR x : INTEGER) : SCALAR CARDINAL
ABS (VECTOR x : INTEGER) : VECTOR CARDINAL
ABS (SCALAR x : REAL) : SCALAR REAL

ABS (VECTOR x : REAL) : VECTOR REAL

returns the absolute value |x |.

FLOAT (SCALAR i : INTEGER) : SCALAR REAL
FLOAT (VECTOR i : INTEGER) : VECTOR REAL
converts the integer argument to a real number.

TRUNC (SCALAR r: REAL) : SCALAR INTEGER
TRUNC (VECTOR r : REAL) : VECTOR INTEGER
truncates a real number argument to an integer.

CAP (SCALAR c: CHAR) : SCALAR CHAR
CAP (VECTOR ¢ : CHAR) : VECTOR CHAR
converts a lower-case character to a capital letter; other characters remain unchanged.

CHR (SCALARi: INTEGER) : SCALAR CHAR
CHR (VECTOR i : INTEGER) : VECTOR CHAR
returns the character corresponding to ordinal number i.

ORD (SCALAR x : ordinal) : SCALAR INTEGER
ORD (VECTOR x : ordinal) : VECTOR INTEGER
ORD (SCALAR x : CHAR) : SCALAR INTEGER
ORD (VECTOR x : CHAR) : VECTOR INTEGER
returns the ordinal number corresponding to the argument.

EVEN (SCALAR i : INTEGER) : SCALAR BOOLEAN
EVEN (VECTOR i : INTEGER) : VECTOR BOOLEAN
returns TRUE if i is even, else FALSE.

ODD (SCALAR i : INTEGER) : SCALAR BOOLEAN
ODD (VECTOR i : INTEGER) : VECTOR BOOLEAN
returns TRUE if i is odd, else FALSE.

6. The Parallaxis Programming Language

¢ MAX (TYPE ordinal) : SCALAR ordinal
returns the largest element of type ordinal.

e MIN (TYPE ordinal) : SCALAR ordinal
returns the smallest element of type ordinal.

e SIZE (SCALAR x : type) : SCALAR INTEGER
SIZE (VECTOR x : type) : SCALAR INTEGER
returns the size of memory space used by variable x. This value is constant, but cannot
be calculated at compile time, since it is implementation-dependent.

¢ STRCMP (SCALAR sl, s2 : string) : SCALAR INTEGER
STRCMP (VECTOR sl1, s2 : string) : VECTOR INTEGER
compares the strings s1 and s2. Result is +1, 0, -1, depending on whether s1 is lexico-
graphically greater than, equal, or less than s2. Strings must be terminated with chr(0).

e STREQ (SCALAR s1, s2 : string) : SCALAR BOOLEAN

STREQ (VECTOR sl1, s2 : string) : VECTOR BOOLEAN
compares the strings sl and s2. STREQ(s1,s2) = STRCMP(s1,s2) = 0.

¢ SBRandom () : SCALAR BOOLEAN
BRandom () : VECTOR BOOLEAN
returns a random boolean value (vector: one for each PE).

¢ SCRandom () : SCALAR CHAR
VCRandom () : VECTOR CHAR
returns a random character (vector: one for each PE).

¢ SIRandom () : SCALAR INTEGER
VIRandom () : VECTOR INTEGER
returns a random integer (vector: one for each PE).

¢ SRRandom () : SCALAR REAL
VRRandom () : VECTOR REAL
returns a random real number (vector: one for each PE).

e VAL (TYPE ordinal; SCALAR n : INTEGER) : SCALAR ordinal
VAL (TYPE CHAR; SCALAR n : INTEGER) : SCALAR CHAR
VAL (TYPE ordinal; VECTOR n : INTEGER) : VECTOR ordinal
VAL (TYPE CHAR; VECTOR n : INTEGER) : VECTOR CHAR
reverse function to ORD: returns the element or character corresponding to that ordinal
number. It holds: ORD(VAL(ordinal, n)) =n and VAL(CHAR, n) = CHR(n).

e IN_Connected (PORT in_port) : VECTOR CARDINAL
returns the number of connections to in_port of the PE.

¢ OUT_Connected (PORT out_port) : VECTOR CARDINAL
returns the number of connections from out_port of the PE.

¢ IN_Lineconnected (PORT out_port, in_port) : VECTOR CARDINAL
returns the number of connections from an out_port to in_port of the PE.

e OUT_Lineconnected (PORT out_port, in_port) : VECTOR CARDINAL
returns the number of connections from out_port of the PE to an in_port.

50 Parallaxis Version 2 User Manual

Operators in Expressions
(in order of priority)

unary operators: NOT + -

power: il

multiplication: * / DIV MOD AND &

addition: + - OR

relation: = <> # < <= > >= IN

NOT is an unary operator, "+" and "—" may be unary or binary, all other operators are binary.
Power "**" is right-associative, while all other operators are left-associative.

DIV is the integer divison, MOD the integer remainder, while "/" denotes a real-number divi-
sion.

Boolean and is expressed by either AND or "&". Not equal is expressed by either "<>" or "#".

6.9 Graphics Interface

Parallaxis provides a set of primitive procedures and functions to get a machine independent
graphics interface. Although these procedures build a machine-independent graphics interface,
the available graphics features depend on the machine used.

PLEASE NOTE: The Graphics Interface is currently only implemented for work-
stions with X-windows (not yet for Macintosh and PC systems).

To handle the colors a new data structure is automatically declared:

TYPE COLOR = RECORD
RED, GREEN, BLUE : CARDINAL;
END;

The components of this record hold the intensity of the corresponding colors. All functions and
procedures set the read-only-variable Done according to the success of the function or proce-
dure.

¢ OpenWindow (SCALAR x,y : REAL) : SCALAR INTEGER
opens a new window on the screen with the relative measure x and y (relative to the abso-
lute screen coordinates). The result is the window selector which is needed to activate or to
close the window. The new window will automatically be activated when it is opened. If the
new window could not be opened, the previously active window will stay active. You have
to click the mouse button with the cursor in the newly opened window, in order to pro-
ceed!

¢ OpenAbsWindow (SCALAR x,y : INTEGER) : SCALAR INTEGER
opens a new window on the screen with the absolute measure of x pixels by y pixels (if it
fits onto the screen).The result is the window selector which is needed to activate or to close
the window. The new window will automatically be activated when it is opened. If the new
window could not be opened, the previously active window will stay active. You have to
click the mouse button with the cursor in the newly opened window, in order to proceed!

6. The Parallaxis Programming Language

¢ CloseWindow (SCALAR handle : INTEGER)
closes the window with the window selector handle. After execution, no window will be
active, so another window has to be selected before the next graphics operation.

¢ WindowSize (SCALAR VAR x,y : INTEGER)
returns the parameters x and y with the measure of the active window in pixels.

¢ SelectWindow (SCALAR handle : INTEGER)
activates the window with the window selector handle for subsequent graphics comman

¢ SetColor (SCALAR ¢ : COLOR)
SetColor (VECTOR c : COLOR)
sets the actual painting color to the values contained in the record c. The real color depen
on the hardware facilities of the system used (24 bit true color systems are supported).

¢ SetPixel (SCALAR x,y : INTEGER)
SetPixel (VECTOR x,y : INTEGER)
sets the point with the pixel coordinates (x,y) to the previously defined color. If SetPixel
called with vector arguments and the previous call of SetColor has been with a scalar arg
ment, then all pixels will be displayed in the same color.

¢ GetPixel (SCALAR x,y : INTEGER) : SCALAR COLOR
returns the color of the point with the pixel coordinates (X,y).

e Line (SCALAR x1,yl, x2,y2 : INTEGER)
draws a line using the actual color from the point with the pixel coordinates (x1,y1) to tt
point with the pixel coordinates (x2,y2).

¢ MoveTo (SCALAR x,y : INTEGER)
defines the active position at the pixel with coordinates (x,y) for subsequent drawing rou
tines.

¢ Draw (SCALAR c : INTEGER)
writes character c at the active position in the previously selected window.

¢ Drawlnt (SCALAR i: INTEGER; SCALAR n : CARDINAL)
writes integer number i with a width of n characters at the active position in the previous
selected window.

e DrawCard (SCALAR i : INTEGER; SCALAR n : CARDINAL)
writes cardinal number i with a width of n characters at the active position in the previous
selected window.

¢ DrawReal (SCALAR T : REAL; SCALAR n : CARDINAL)
writes floating point number r with a width of n characters at the active position in the pr
viously selected window.

52 Parallaxis Version 2 User Manual

» DrawFixPt (SCALAR r : REAL; SCALAR n,p : CARDINAL)
writes floating point number r with a width of n characters and p decimals at the active posi-
tion in the previously selected window.

e DrawBool (SCALAR b : INTEGER)
writes boolean value b at the active position in the previously selected window.

e DrawString (SCALAR s : string)
writes character string s at the active position in the previously selected window.

On Unix workstations, the font of the drawing routines may be influenced by setting the envi-
ronment variable PARALLAXIS_FONT to a valid X-Window string. The construction of such
a string is described in the X-window documentation.

E,g.: $ setenv PARALLAXIS_FONT "-adobe-symbol—-*—*—*—*_2(0—*—k_k_k_%_%x_x"
defines that all output is made using the adobe-font "symbol" in a size of 20 pixels.

7. The PARZ Intermediate Language

7 The PARZ Intermediate Language

PARZ is a parallel intermediate language. It is a machine-independent pseudo-assembler st
able to code massively parallel programs. PARZ programs are normally generated by the P
allaxis Compiler. For the PARZ language is readable as well, it is also possible to write PAE
programs manually.

A PARZ-program consists of:

¢ the keyword sTarr,

¢ the number of processors (PEs) and ports per PE,

¢ the declaration of global variables (for control-processor and for the parallel PEs),
e alist of commands and

¢ the keyword sTop.

The formal syntax of PARZ can be found in Appendix B.

7.1 Specifying Processors and Connections

Unlike in Parallaxis, the processors in PARZ are linearly arranged and numbered consecuti
ly, starting with 1. To define the structure of the processor-array, the number of processor e
ments (PEs) and the number of ports on each PE are stated in each program after the keywo
START.

Connections between PEs are established dynamically during program execution.

7.2 Data Management

To support the concept of nested procedures in Parallaxis, PARZ provides mechanisms for st
ic and dynamic chains. Before starting the main program or a procedure, memory chunks ft
the control processor and the PEs are dynamically allocated. The structure of the required me
ory blocks is defined by declarations preceding the assembly-command part of the program,
by declarations in the procedures. Declarations for the control processor start with the keywo
SCALAR, while VECTOR is used for the processor array. The keywords SCALAR and VECT(
of the global declarations have to be present in each program; declarations for local procedu
variables may be omitted. The elementary data types are boolean, char, integer or real, whi
is defined in the declaration.

The keyword SCALAR or VECTOR of a declaration is followed by a possibly empty list of
subdeclarations. This may be:

1) One of the characters B, C, I or R representing type boolean, char, integer or real. This ch
acter is followed by a positive integer number . Such a declaration describes a block of leng
n with variables of the same defined type.

2) A positive integer number m followed by a list of sub-declarations enclosed in parenthest
This is an abbreviation for m repetitions of that list.

54 Parallaxis Version 2 User Manual

3) The character 'U' ("union") followed by a comma separated list of declarations, enclosed in

parentheses. This is a variant declaration. Each declaration in the list uses the same memory
locations.

Example 7.1: variable declaration

SCALAR I5 2(C3 2(I1 B1) R4)
VECTOR I1 B1 U (R3, I1 2(Bl C3))

the above declarations are equivalent to:

SCALAR I5 C3 1I1 Bl 1I1 Bl R4 C3 I1 Bl 1I1 Bl R4
VECTOR I1 B1 U (R3, I1 Bl C3 Bl C3)

and reflect the Parallaxis declaration:

SCALAR a, b, ¢, d, e : integer;

f : ARRAY [1 .. 2] OF
RECORD
a, b, c : char;

d : ARRAY boolean of RECORD i : integer;
b : boolean;

END;
e, £, g, h : real;
END;
VECTOR r : RECORD i : INTEGER;
CASE b : BOOLEAN OF
TRUE : x,y,z : REAL |
FALSE : j : INTEGER;
a : ARRAY [2] OF

RECORD b : BOOLEAN;
c,d,e : CHAR
END
END
END;

7.3 Variables and Constants

Arguments of PARZ commands may be:

¢ simple variables

e indirect variables

¢ predefined variables for special purposes
e variables with address operator

* constants

7. The PARZ Intermediate Language

Simple Variables

Variables defined in declarations can be identified by a variable description consisting of th
following four parts:

1.) One of the characters S or V to distinguish between variables for the control processor (¢
scalar) and variables for the PE-array (V = vector).

2.) One of the characters B, C, I or R defining the type of the variable.

3.) An integer >= 0 giving the nesting level of the procedure declaring the variable.
Global variables have nesting level 0.

4.) An integer > O giving the variable number. The variables defined in a declaration are nu
bered separately for each type (starting from 1).

Components 3) and 4) are seperated by a colon.

Components of variants are numbered as if the character 'U', the parantheses and the comm

were missing.

Example 7.2: variable access

() SCALAR I2 R1 Il
VECTOR B2 Il
defines the variables
S10:1, SI10:2, SRO:1, SI0:3, VBO:1, VB0:2 and VIO:1

2) PROC 3 VECTOR Il U(I2, R1 I1, 2(U(C1l, I2)))
defines the local procedure variables

VI3:1 VI3:2 VI3:3
VR3:1 VI3:4
VC3:1 VC3:2
VI3:5 VI3:6 VI3:7 VI3:8

where vertically aligned variables occupy the same memory location!

Indirect Variables

Two kinds of indirection are possible in PARZ: In locally indirect variables, the variable nu
ber of a simple variable is substituted by another simple integer variable enclosed in square
brackets. For global indirection, the first two characters also denote memory type and data tyy
A simple integer variable following these characters in square brackets gives the absolute a
dress of the referenced memory cell. This memory cell must have the type determined by tt
second character of the variable description.

Example 7.3: indirection

1.) local indirection
SI1:[SI0:3] nd
SI1:2 define the same memory cell, if the variable SI0:3 has value 2.

VI1:[SI0:3] or
VI1:[VIO:3] are determined in analogy.
(the latter by substituting the value of VI0:3 on each PE for [VIO:3].)

56 Parallaxis Version 2 User Manual

2.) global indirection
if SI1:2 has value 3, then
SR[SI1:2] addresses the scalar memory cell with absolute address 3 of type real.

VR[SI1:2] or

VR[VI1:2] are handled in analogy to the scalar case.

(For the latter, evaluating VI1:2 on each PE gives the variable address.
The referenced vector components must be of type real.)

Predefined Variables

PARZ has some predefined variables for special tasks:

MaxTrans (maximum number of data elements to be transferred)
write-only, is read by LOAD and STORE commands

ActTrans (number of actually transferred elements)

read-only, is set by LOAD and STORE commands
SResult (boolean result of a scalar block-compare)

read-only, receives a value from scalar EQUAL command
VResult (boolean result of a vector block-compare)

read-only, receives a value from vector EQUAL command
Done (denotes successful input/output operations)

read-only, receives a value from I/O commands
termCH (holds termination character after reading a string)

read-only, receives a value when reading a string

Address Operator

To use the absolute address of a simple variable as argument to a command, the variable is pre-
ceded by the address operator ADDR. The address of a variable can be used like an integer value.

Example 7.4: addresses

SI0:1 := ADDR SRO0:2;
VIO:3 := ADDR VCl:5 + SI3:6;
Constants

All constants have a definite type:

 integer constants are positive integer numbers, written as a sequence of digits.
e real constants are positive numbers in floating-point representation.

¢ boolean constants are TRUE and FALSE.

¢ achar constant is an arbitrary character enclosed in apostrophes.
If the character is the apostrophe itself, it has to be duplicated.

e NIL is a non-existing absolute address used as an integer.
¢ on each PE the value of the vector constant 1p is the PE-number.
e termsS is the string terminator. It is the character with code 0.

¢ EOL stands for the end-of-line character.

7. The PARZ Intermediate Language

¢ Unprintable characters may be stated as constants by using the pseudo-function CHR wit
the character-code as argument. The PARZ simulator uses ASCII to code characters.
termS and CHR (0) are equivalent.

e A string is a sequence of characters enclosed in quotes. Any quotes contained in the strir
have to be duplicated. Strings can be arguments of output commands, assignments, and
comparisons.

e The SIZE operator gives the size of a memory block described by a declaration.

Example 7.5: constant values

1234, O,

1.3, 3., .5, .7E-2, 8.2e20,
'x', ''"'1', chr(255),

"PARZ simulator",

ID, NIL,

SIZE(I1 3(R1 C2))

In the present implementation, the latter example is equivalent to the integer value 10, as eve
memory element has equal length 1. In other implementations this may be different.

7.4 Pseudo-Assembly Commands

Each command in PARZ can be preceded by a label definition optionally combined with inf
mation on the source code and a record-flag.

A label definition has the EBNF-description:
labdef = label ["!"[line]] ["R"] ":".

label is an integer > 0. This number is used to refer to the following command.

" is generated by the compiler to mark the first PARZ command for a Parallaxis statem
line 1is the line-number in the source program

"R" marks commands that will always appear in the recording-file when simulated

Each command is followed by a semicolon. All text from the semicolon to the end of a line
a comment. Whether a command is executed by the control processor or by the PE array de
pends on its arguments. The control processor only works on scalar data, while scalar argu-
ments of a command for the PE-array have the same value on all PEs.

A variable which never got a value assigned is marked as not initialized. In each variable th
type of its value is stored. A read-attempt to an uninitialized variable or a variable with the

wrong value type causes a warning (this may be switched off, see section 4.1).

Common non-terminals in the following EBNF descriptions of PARZ commands are:

vardesc simple, indirect or predefined variable (with write access)
VarConst vardesc, variable with address op., constant value or any predefined variable
label label defined in a label definition

declaration declaration as described above

Words in capital letters are keywords. They may be written in capital or lower case letters.

58 Parallaxis Version 2 User Manual

Simple Commands

Assignment and Type Conversion
vardesc ":=" VarConst

The value of VarConst is assigned to vardesc. If vardesc and VarConst have different types, a
type conversion is performed. The assignment is the only way to do a type conversion, all other

commands produce an error in case of a type conflict. If VarConst is a vector, vardesc has to
be a vector variable, too.

The following type conversions are possible:

boolean - integer/real :resultisOor 1 (0.0 or 1.0)

char - integer : result is the code of VarConst (0 .. 255)

integer/real - boolean : result is TRUE, if VarConst <> 0 (0.0)

integer - char : result is character with code VarConst

integer - real : result is VarConst as a real-value

real - integer : result is trunc(VarConst)

string - char : the string-constant VarConst is copied to a char-array
with vardesc as first element (a string is terminated by
terms)

Unary Operators
vardesc ":=" ("-" | NOT) VarConst

If VarConst is vector, vardesc has to be a vector-variable, too.
- is the negation operator for integer and real values.
NOT s used to negate booleans.

Binary Operators
vardesc ":=" VarConstl op VarConst2

If one of the right-hand side arguments is a vector, vardesc has to be a vector-variable too.
Arithmetic and logical operators to be inserted for op are:

"+ : addition of integer- or real-values

" : subtraction of integer- or real-values

" : multiplication of integer- or real-values

e : division of integer- or real-values (= DIV-operator with integers)

AT : power for the type combinations: integer := integer " integer,
real := real ™ integer, real := real " real

MOD : remainder of integer-division

AND : logical and for booleans

OR : logical or for booleans

The following relational operators for op need a boolean vardesc. The operators are defined for

all types, but the right-hand side arguments must be of the same type. Boolean values are or-
dered FALSE < TRUE. Characters are ordered according to the character code.

=" : equal
<> : not equal
RS : less than

7. The PARZ Intermediate Language

=" : less than or equal
"> : greater than
">=" : greater than or equal
Unconditional Jum
GOTO label

Execution continues with the command denoted by label. This command mustn't be a PRO!

Conditional Jump
IF VarConstl [op VarConst2] GOTO label

op is a relational operator. If VarConstI is the only argument, it has to be boolean, otherwis
'VarConstl op VarConst2'is a condition resulting in a boolean value. If the condition is TRU
execution will continue with the command defined by /abel. Otherwise the program continu
with the next command. All arguments have to be scalars. For vector conditions the conditior
procedure call has to be used.

Block Copy
MOVE vardesc_s TO vardesc_d AS declaration

vardesc_s and vardesc_d are the first variables of two memory blocks, whose structure is d
fined by declaration. The contents of the source block beginning with vardesc_s is copied t
the destination block beginning with vardesc_d. No warning results from uninitialized vari:
les in the source block, but the corresponding destination variables will also become uninitiz
zed. The types in both blocks have to match declaration, otherwise execution will abort. In ca
vardesc_s is a vector, vardesc_d has to be a vector as well.

Block Comparison
EQUAL vardesc1 vardesc2 AS declaration

This command compares the two memory blocks defined by two variable descriptions and
declaration. If both blocks are scalar, the result is written to SResult, otherwise to VResul
Two blocks are equal, if every two corresponding memory cells have the same value. No wa
ing is generated, if the blocks contain uninitialized values. Two uninitialized values are rega
ed equal, but an uninitialized value does not match any initialized value.

Program Halt
HALT

This command terminates program execution.

Program End
END

This has to be the last command preceding the keyword STOP. It has to appear exactly once
a program. END and HALT have the same effect.

No Operation
NOP

This command has no effect.

60 Parallaxis Version 2 User Manual

Procedures

Procedure Call

CALL label

A new activation record containing return address and procedure level is generated on the call-
stack. Program execution is continued with the PROC-command defined by the label. If the
command marked with label is no PROC, an error is generated when reading the program. After
returning from the called procedure, execution continues at the command following CALL.

Conditional Procedure Call

IF VarConstl [op VarConst2] CALL label

VarConstl, op and VarConst2 form a condition similar to the conditional jump command. But
here, VarConstl and VarConst2 may be vector values. The procedure defined by label is exe-
cuted with all active PEs for which the condition is true. The activation record additionally con-
tains the processor status which will be restored after the return. The calling mechanism is the
same as for the CALL command. If the condition is false for all PEs, the procedure is not called
at all!

While Loop
WHILE VarConstl [op VarConst2] CALL label

This command is similar to an IF-CALL, but execution loops after returning from the proce-
dure call. Only if the condition is false for all PEs, execution will resume with the next com-
mand. This command may also be expressed by the REDUCE and the IF—CALL command,
which is especially necessary in case of more complex conditions:

Example 7.6: constructing a WHILE loop with REDUCE and IF-CALL

WHILE c CALL p; c is a condition, p is a procedure label
is equivalent to:
1: vb := c; vb is a temporary boolean vector

sb := REDUCE OR OF vb;sb is a temporary boolean scalar

IF sb = FALSE GOTO 2; done if c¢ = FALSE on all PEs
IF vb CALL p;
GOTO 1;

Procedure Head

PROC level [SCALAR s_declaration] [VECTOR v_declaration]

The procedure level of the static link is expressed by an integer > 0; this reflects the nesting
level of a procedure in Parallaxis. s_declaration and v_declaration are the declarations of scalar
and vector variables local to the procedure. These variables have the same level number level.
They are allocated in the activation record generated by the calling CALL or REDUCE com-
mand. They may be accessed from the procedure and all nested subroutines. Entering a PROC
command without a call will cause an error. A procedure may only call procedures with a nest-
ing level less or equal to its own level plus 1, and it may only reference variables at the same
or a lower nesting level.

7. The PARZ Intermediate Language

Procedure Return

RETURN

Execution continues at the command following the procedure call (except while-call) and
with the procedure level stored in the activation record after it is removed from the call-stac
A possibly saved processor status is restored.

Global and Local Stacks

Procedure parameters and results are saved on separate parameter stacks. Therefore, procedu
parameters and function results may easily be passed via push and pop on the data stack. Tl
control processor and each of the PEs have a separate data stack.

Push Data Stack

PUSHS VarConst

PUSHYV VarConst

PUSHS puts a scalar value on top of the control stack. PUSHV puts a local value on top of ea
PEs local data stack.

Pop Data Stack
POPS vardesc

POPYV vardesc

POPS takes a scalar value off the stack and assigns it to a variable (duplication if this variat
is a vector). POPV takes a vector component off each active PE's data stack and assigns it tc
local vector component.

Vector Commands

Set Processor Status

PARALLEL (bits | vardesc)

The PARALLEL command can activate and deactivate any PE (the same happens implicitly {
a vector CALL and RETURN). PEs which were inactive on entering a procedure and therefc
don't know any local variables, cannot be activated in that procedure. Trying to do this wil
cause a warning with the PE remaining inactive.

The desired processor status may be set by a bitstring (bits) or a variable. The bitstring contai
the digits '1' (active) or '0' (passive) for each PE. The string may contain white space and m.
stretch over several lines. In case of a variable, it has to be the begin of a scalar boolean arrz
Each component of the array holds the status for one PE. An error occurs if the array does n
contain enough elements.

Get Processor Status

vardesc ":=" STATUS

vardesc is the begin of a scalar boolean array. Each component of the array receives the stat
of one PE. An error occurs if the array is too small.

Adding connections
CONNECT o_port TO i_port AT VarConst

BICONNECT o_port TO i_port AT VarConst

On each PE these commands connect port o_port to port i_port of the PE specified by
VarConst.

In the second form, the reverse connection is built up as well.

62 Parallaxis Version 2 User Manual

Example 7.7: establishing a ring of three processors with bidirectional connections

START

3 PE

2 PORTS

100 : VIO:10 := ID MOD 3;
101 : VIO:10 := VvIO:10 + 1;

102 : BICONNECT 2 TO 1 AT VIO:10;

'
'
!

Removing connections

DISCONNECT [o_port]

If o_port is specified, connections leaving o_port on any PE are removed. Otherwise all con-
nections are removed.

Existence of Connections

vardesc ":=" CONNECTED IN i_port

vardesc ":=" CONNECTED OUT o_port

vardesc ":=" CONNECTED IN i_port OUT o_port

vardesc ":=" CONNECTED OUT o_port IN i_port

This command has four forms. vardesc always is an integer vector-variable where the result is
stored. Ports are scalar integer variables or constants that have to be valid port numbers. On
each PE the commands count the number of connections ending in that port (IN, or IN-OUT)
or leaving that port (OUT, or OUT-IN).

Data Exchange
Value Propagation between Active Processors

1.) PROPAGATE vardesc OUT o_port IN i_port
Each active PE puts the (vector-) value of vardesc on its port o_port (an integer with
appropriate value), if there is an outward connection. In the second step, each active PE
tries to read a value from its port i_port. If a connection ends there and a value arrives, this
is the new value to be assigned to vardesc, otherwise vardesc remains unchanged.

2.) PUSHS o_port;
PUSHS i_port;
PROPAGATE VarConst TO v_vardesc [REDUCE (func | label) ;
Each active PE puts its value of VarConst on their port o_port and then stores the values
coming in on their port i_port in variable v_vardesc. If multiple values are received, a
reduce operator must be specified by the optional argument (see REDUCE command).-
PROPAGATE removes the port parameters from the scalar stack.

7. The PARZ Intermediate Language

Value Propagation between Active and Inactive Processors

1.) PUSHS o_port;
PUSHS i_port;
SEND VarConst TO v_vardesc [REDUCE (func | label)];

2.) PUSHS o_port;
PUSHS i_port;
RECEIVE v_vardesc FROM VarConst [REDUCE (func | label)];
The arguments have the same meaning as in the second form of the PROPAGATE
command.
In the SEND command, active PEs are sending VarConst, all PEs are receiving values
in v_vardesc.
In the RECEIVE command, all PEs are sending VarConst, active PEs are receiving valu
in v_vardesc.

Data Transfer between Host and PEs
LOAD v_vardesc WITH s_vardesc [(PE num) | (AS declaration)]
STORE v_vardesc TO s_vardesc [(PE num) | (AS declaration)]

v_vardesc is a vector-variable

s_vardesc is the first variable of a scalar array of the same type as v_vardesc.

LOAD moves scalar data (from the host) to a vector (to the PEs), while STORE moves vectc
data to a scalar, which usually is an array. With suffix "PE num", only a specific PE is affecte
and s_vardesc is a single variable. With suffix "AS declaration", the vector variable is the b
ginning of a block as described by the declaration; the scalar variable is the beginning of an
array of such blocks. LOAD copies the components of the scalar array to v_vardesc on all acti
PEs. The first active PE gets the first array component, the second active PE the second cor
ponent, and so on. If MaxTrans is set to a value, it determines the maximum number of co
ponents to be transferred. After LOAD has been executed, MaxTrans becomes uninitialize
and ActTrans contains the number of actually transferred variables or blocks. The revers
operation STORE works in analogy.

Vector Reduction

Reduce Vector to Scalar

vardesc ":=" REDUCE (func | label) OF VarConst

Reduces all components of a vector to a single scalar value by repeatedly applying a reducti
function.

vardesc is a scalar variable.
VarConst is a vector value with the same type as vardesc.

It has to be a vector variable or the vector constant ID.
func is one of the following predefined function names:

Predefined Reduce Functions:

FIRST for all types: returns the value on the first active PE. An error is reported if
none of the PEs is active (exception: ID is reduced to number of PEs + 1 in t
case).

LAST: for all types: returns the value on the first active PE. An error is reported i

none of the PEs is active (exception: ID is reduced to O in this case).

64 Parallaxis Version 2 User Manual

SUM: for integer/real: returns the sum of the values of all active PEs.
Returns 0 if none of the PEs is active.

PRODUCT for integer/real: returns the product of the values of all active PEs.
Returns 1 if none of the PEs is active.

AND for boolean: returns the logical conjunction of the values of all active PEs.
Returns TRUE if none of the PEs is active.

OR for boolean: returns the logical disjunction of the values of all active PEs.
Returns FALSE if none of the PEs is active.

MAX for all types: returns the maximum value of all active PEs. An error is reported
if none of the PEs is active.

MIN for all types: returns the minimum value of all active PEs. An error is reported

if none of the PEs is active.

If a label is used instead of one of the predefined functions, this determines a procedure to be

used as a binary function for vector reduction. The function should be commutative and asso-
ciative, as the result is computed by applying the operator to two values at a time, accumulating
the final result. In order to cooperate with the REDUCE command, the function-procedure has
to pop two values off the vector stack and push the result there upon leaving. The procedure is
executed in a context as if called instead of the REDUCE command. The procedure mustn't con-
tain any data exchanges or reductions.

7.5 Standard Functions
The predefined functions are normally applied in the following form with 0, 1, or 2 arguments:
vardesc ":=" func { VarConst }

All types are real, except where indicated. All angles are in radians.

Arithmetic Functions

ABS absolute value of argument, integer arguments are also allowed
SQRT square root

EXP exponential function (eargument)

LN natural logarithm

SIN sine

COS cosine

TAN tangent

ARCSIN arcus sine

ARCCOS arcus cosine

ARCTAN arcus tangent, result is in range - /2..+ /2

ARCTANT VarConstl VarConst2 takes two arguments for unambiguous reverse function:
arctant (VarConst1/VarConst2)
the result is in range - ..+ with sign(argl) = sign(sin), sign(arg2) = sign(cos)

String Functions
STRCMP VarConstl VarConst2 string comparison, returns integer result: -1, 0 or 1, if the

first string is lexically less than, equal to or greater than the second string. Arguments
may be string constants or character variables denoting the begin of a character array,
where the string is terminated by char terms.

7. The PARZ Intermediate Language

Special Functions
RANDOM returns arandom value of the type of the left-hand-side argument. If the varial

is a vector, each PE gets its own random value.

NEW declaration a memory block with the structure defined by declaration is allocatec
on the heap. The returned integer value represents its absolute address. If
varesc is a vector variable, a block is allocated in the heap of each PE. In the
present implementation, heap addresses are negative integers.

INITSET bits The left hand side argument is the first element of an ARRAY OF BOOLE/

implementing a SET variable. 'bits' contains a character '0' or '1' for each possible
member of the SET.

7.6 Standard Procedures

Predefined procedures are treated like pseudo-assembler commands and do not have to be e:
cuted by explicitly using CALL.

Input / Output Procedures

READ vardesc [VarConst]

The scalar or vector variable vardesc receives the value read from the active input
stream. If a second argument is supplied, it is a scalar integer value representing the
maximum length of a string to be read into the character array beginning with vard-
esc. To read a string, leading white space and control characters are skipped. The
white space or control character following the string is copied to the variable ter—
mCH, but not removed from the input stream. If the type of vardesc is boolean, integer
or real, a string is read as described above and converted to a value of the desired
type. The only strings that can be converted to boolean, are TRUE and FALSE in cap-
ital or lower-case letters. If vardesc is a character variable and no second argument is
supplied, exactly one character is read into vardesc without skipping white space. In
this case, termCH isn't modified. After execution, Done reports the success of the
operation. Read operations may fail, if no conversion is possible or if end-of-file is
reached. The specialties of parallel reading from a terminal device are described in
chapter 6.7 .

WRITE VarConst1 [VarConst2 [VarConst3 | | or
WRITELN VarConstl [VarConst2 [VarConst3] |

Writes the scalar or vector value of VarConstl to the current output stream;
WRITELN prints an end-of-line character in addition. With only one argument, a
standard format is used for values of each type (boolean, char, integer, real, string).
With two arguments, VarConst2 is the minimal output length for integers or reals. If
VarConstl is a character variable, it is the first of a character array containing a string
of maximal length VarConst2. Three arguments are used to write real-values in a fix-
point representation. Here, VarConst2 is the minimal output width and VarConst3 is
the fraction width. The specialties of parallel writing to a terminal device are
described in chapter 6.7 .

